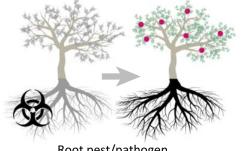
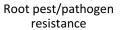
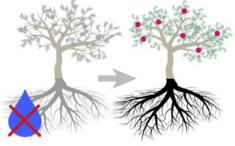

Inheritance of rootstock effects in avocado cv. Hass

Paula Reyes, <u>Andrés J. Cortés,</u> Laura Muñoz, Valeria Velázquez, Laura Patiño, Oscar Delgado, Cipriano Díaz, Alejandro Navas

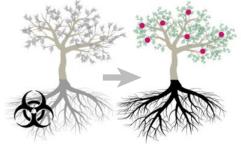

acortes@agrosavia.co

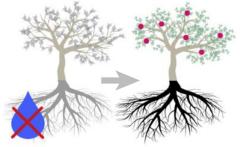




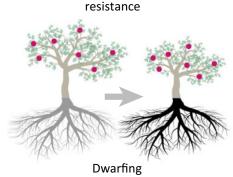
resistance

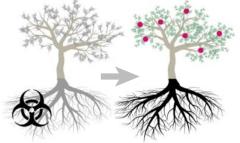
Warschefsky et al. 2015

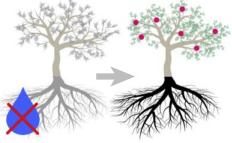


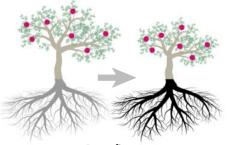

Abiotic stress tolerance (drought, flooding, salt, soil conditions)

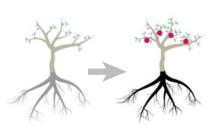
Warschefsky et al. 2015

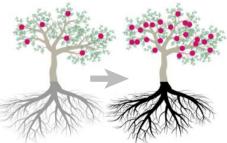

Root pest/pathogen resistance


Abiotic stress tolerance (drought, flooding, salt, soil conditions)

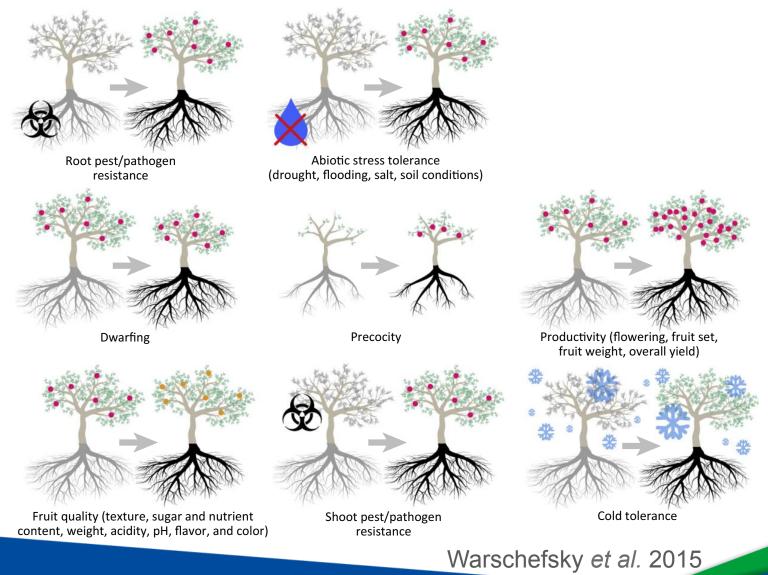





Root pest/pathogen resistance


Abiotic stress tolerance (drought, flooding, salt, soil conditions)

Dwarfing


Precocity

Productivity (flowering, fruit set, fruit weight, overall yield)

Warschefsky et al. 2015

Grafting: Rootstock – Scion Interaction ROOTSTOCK PROPERTIES IN AVOCADO

HORTSCIENCE 54(5):809-813. 2019. https://doi.org/10.21273/HORTSCI13552-18

Screening Progenies of Mexican Race Avocado Genotypes for Resistance to *Phytophthora cinnamomi* Rands

Enrique I. Sánchez-González, J. Guadalupe Gutiérrez-Soto, Emilio Olivares-Sáenz, and Adriana Gutiérrez-Díez¹

Universidad Autónoma de Nuevo León, Facultad de Agronomía, General Escobedo, Nuevo León, 66059 Mexico

Alejandro F. Barrientos-Priego

Universidad Autónoma Chapingo, Departamento de Fitotecnia, Chapingo, Estado de Mexico, 56230 Mexico

Salvador Ochoa-Ascencio

Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Agrobiología Presidente Juárez, Uruapan, Michoacán, 60170 Mexico

Grafting: Rootstock – Scion Interaction ROOTSTOCK PROPERTIES IN AVOCADO

HORTSCIENCE 54(5):809-813. 2019. https://doi.org/10.21273/HORTSCI13552-18

Screening Progenies of Mexican Race Avocado Genotypes for Resistance to *Phytophthora cinnamomi* Rands

Enrique I. Sánchez-González, J. Guadalupe Gutiérrez-Soto, Emilio Olivares-Sáenz, and Adriana Gutiérrez-Díez¹ Universidad Autónoma de Nuevo León, Facultad de Agronomía, General

Escobedo, Nuevo León, 66059 Mexico

Alejandro F. Barrientos-Priego

Universidad Autónoma Chapingo, Departamento de Fitotecnia, Chapingo, Estado de Mexico, 56230 Mexico

Salvador Ochoa-Ascencio

Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Agrobiología Presidente Juárez, Uruapan, Michoacán, 60170 Mexico

J. Amer. Soc. Hort. Sci. 127(4):649-655. 2002.

Rootstock Influences Changes in Ion Concentrations, Growth, and Photosynthesis of 'Hass' Avocado Trees in Response to Salinity

Michael V. Mickelbart¹ and Mary Lu Arpaia²

Department of Botany and Plant Sciences, University of California, Riverside CA 92521

Grafting: Rootstock – Scion Interaction ROOTSTOCK EFFECTS IN AVOCADO

Journal of Horticultural Science & Biotechnology (2007) 82 (3) 460–466

Effects of clonal rootstocks on 'Hass' avocado yield components, alternate bearing, and nutrition

By MICHAEL V. MICKELBART^{1,3*}, GARY S. BENDER², GUY W. WITNEY^{1,4}, CAROL ADAMS⁵ and MARY LU ARPAIA^{1,6}

Grafting: Rootstock – Scion Interaction ROOTSTOCK EFFECTS IN AVOCADO

Journal of Horticultural Science & Biotechnology (2007) 82 (3) 460–466

Effects of clonal rootstocks on 'Hass' avocado yield components, alternate bearing, and nutrition

By MICHAEL V. MICKELBART^{1,3*}, GARY S. BENDER², GUY W. WITNEY^{1,4}, CAROL ADAMS⁵ and MARY LU ARPAIA^{1,6}

SCIENTIFIC NOTE

Rootstock affects the blend of biogenic volatile organic compounds emitted by 'Hass' avocado


Ricardo Ceballos¹, and Tommy Rioja^{2, 3*}

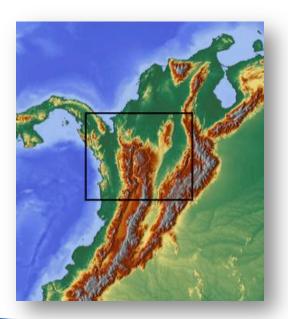
Grafting: Rootstock – Scion Interaction SCION EFFECTS IN AVOCADO

ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2017 VOL. 63, NO. 14, 1951–1962 https://doi.org/10.1080/03650340.2017.1317921

Effects of avocado (*Persea americana* Mill.) scion on arbuscular mycorrhizal and root hair development in rootstock

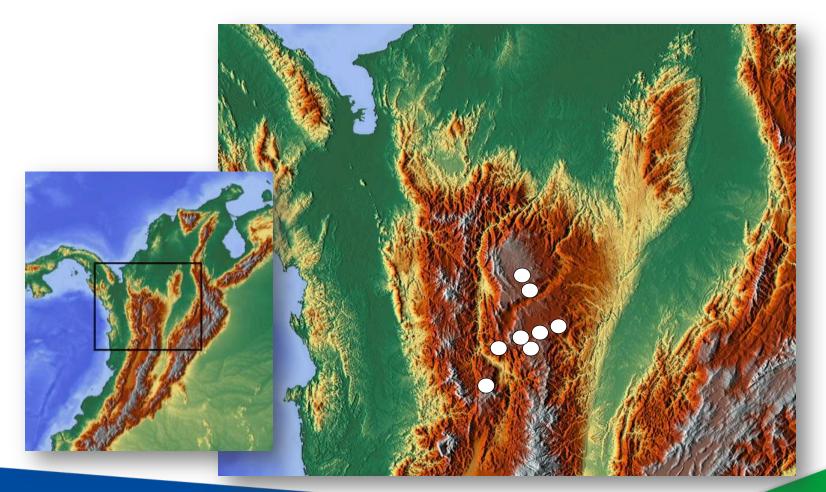
Bo Shu, Liqin Liu, Dengwei Jue, Yicheng Wang, Yongzan Wei and Shengyou Shi

North – West Andes SAMPLING: 8 PLANTATIONS, 240TREES



Quantify inheritance of rootstock effects on 'Hass' avocado

North – West Andes SAMPLING: 8 PLANTATIONS, 240TREES


Quantify inheritance of rootstock effects on 'Hass' avocado

North – West Andes SAMPLING: 8 PLANTATIONS, 240TREES

Quantify inheritance of rootstock effects on 'Hass' avocado

Rootstock–Mediated Heritabilities (h^2)

ANIMAL MODEL: 13 SSRs + 20 TRAITS

Type of trait	Years	Trees	Number of traits	Phenotypic traits	
	2016	240	8	Tree height	
				Trunk height	
				Rootstock height	
Marphalagical				Scion lenght	
Morphological				Rootstock perimeter	
				Scion perimeter	
				Trunk perimeter under graft scar	
				Rootstock compatibility	

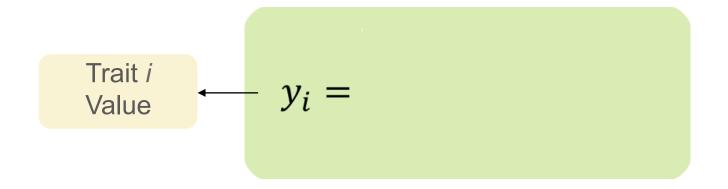
Rootstock–Mediated Heritabilities (h^2)

ANIMAL MODEL: 13 SSRs + 20 TRAITS

Type of trait	Years	Trees	Number of traits	Phenotypic traits	
	2016		8	Tree height	
				Trunk height	
				Rootstock height	
Morphological		240		Scion lenght	
Morphological		240		Rootstock perimeter	
				Scion perimeter	
				Trunk perimeter under graft scar	
				Rootstock compatibility	
	2015		3	Number of flowers	
Ecophysiological	2016 144	144		Number of fruits (NF)	
	2017	.017		Leaves	

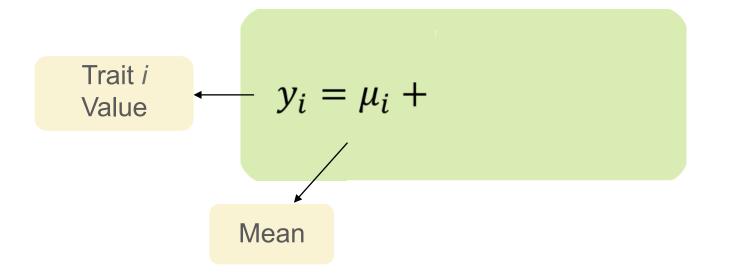
Rootstock–Mediated Heritabilities (h^2)

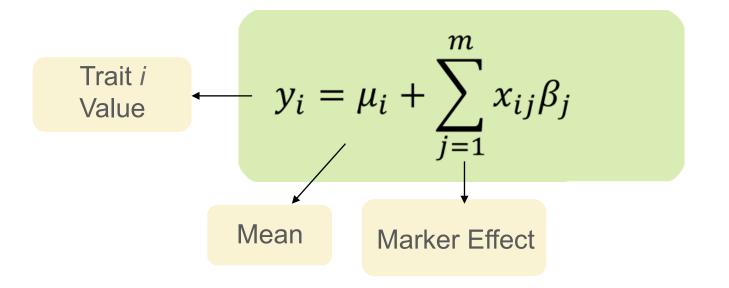
ANIMAL MODEL: 13 SSRs + 20 TRAITS

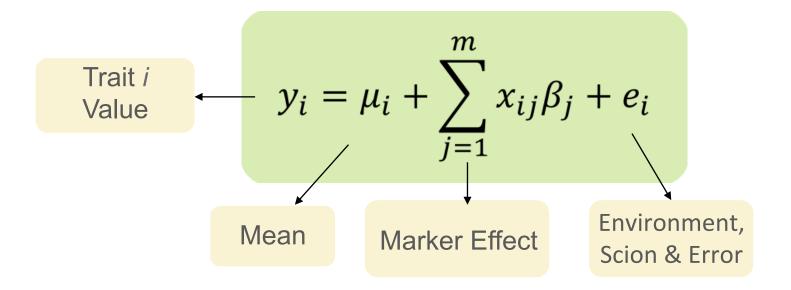


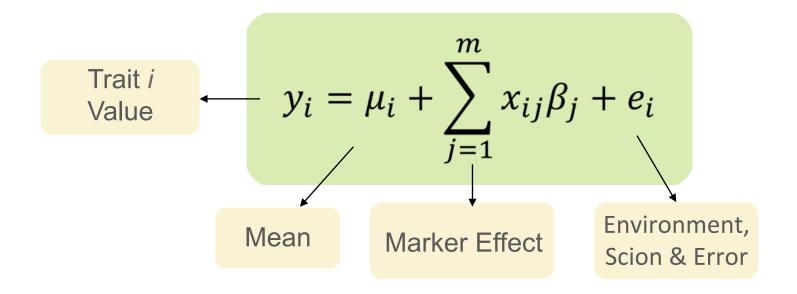
Type of trait	Years	Trees	Number of traits	Phenotypic traits			
		240		Tree height			
				Trunk height			
				Rootstock height			
Morphological	2016		8	Scion lenght			
Morphological	2010			Rootstock perimeter			
				Scion perimeter			
				Trunk perimeter under graft scar			
				Rootstock compatibility			
	2015		3	Number of flowers			
Ecophysiological	2016	144		Number of fruits (NF)			
	2017			Leaves			
				NF with low weight			
			9	NF with mechanical damage			
				NF with exportation quality			
	2015			NF with sun damage			
Harvest	2016	161		NF with damage caused by scarab beetles			
	2017			NF with maturity			
				NF with damage caused by thrips			
		NF with damage caused by Monalon	NF with damage caused by Monalonion spp				
				NF with stem cut below the fruit			
				Sharan at al 1007			

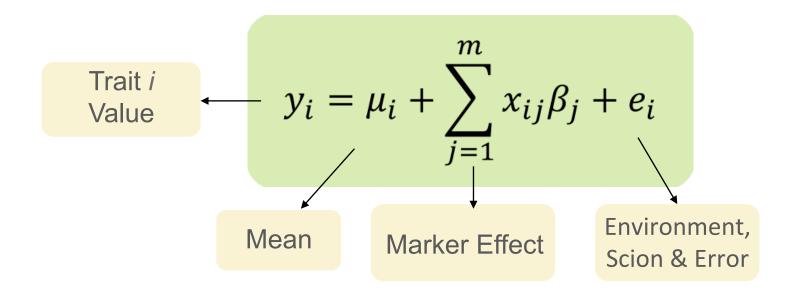
Sharon *et al.* 1997





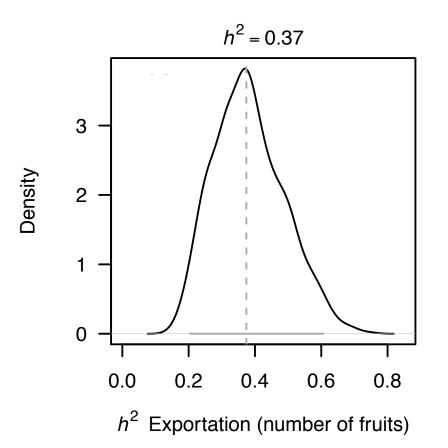


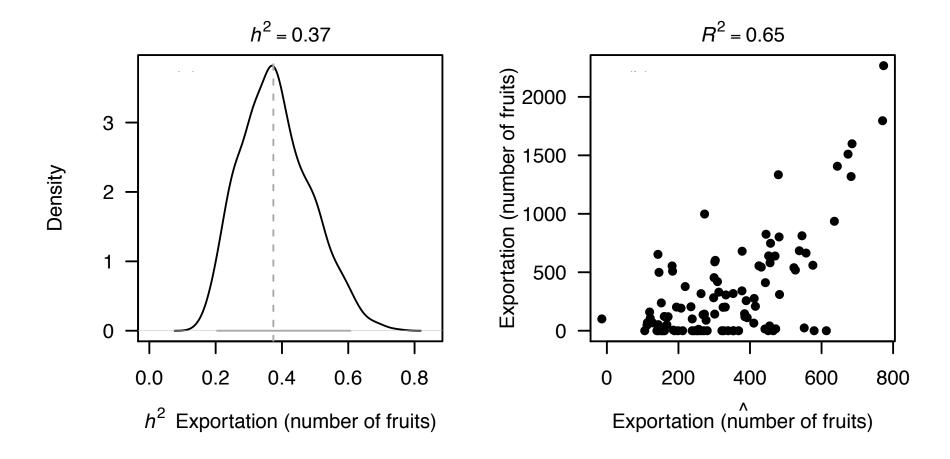




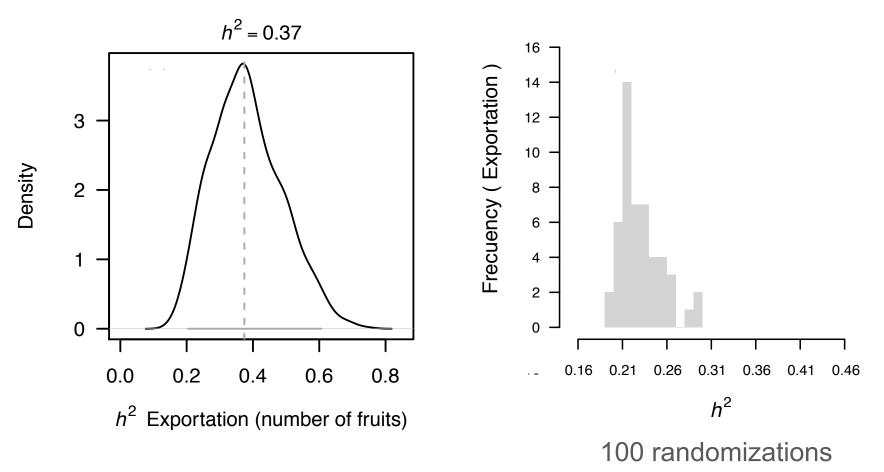
$$u_i = \sum_{j=1}^m x_{ij} \beta_j$$

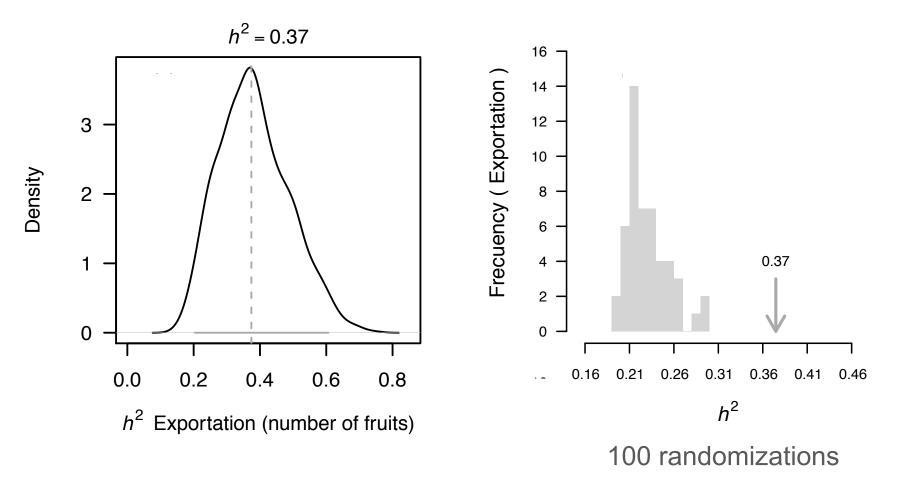
Butler et al. 2007


 $u_i = \sum_{j=1}^m x_{ij} \beta_j$


$$h_i^2 = \frac{Var(u_i)}{Var(u_i) + Var(e_i)}$$

Butler et al. 2007





Trait type	Trait	SSRs		
Trait type	ITalt	h²	r ²	
Morphological	Trunk height	0.38	0.64	

Trait type	Trait	SSRs		
Trait type	Trait	h²	r ²	
Morphological	Trunk height	0.38	0.64	
Eco-physiological	Total number of fruits	0.46	0.74	

Trait type	Trait	SSRs		
Trait type	ITall	h²	r ²	
Morphological	Trunk height	0.38	0.64	
Eco-physiological	Total number of fruits	0.46	0.74	
	Damage by low weight	0.36	0.64	
Harvest (number of fruits)	Damage by thrips	0.35	0.60	
	Exportation quality	0.33	0.58	

Trait type	Trait	SSRs		Phenotype		Genetic	
Trait type		h²	r²	h²	r ²	h²	r ²
Morphological	Trunk height	0.38	0.64	0.36	0.64	0.37	0.64
Eco-physiological	Total number of fruits	0.46	0.74	0.44	0.73	0.45	0.73
Harvest (number of fruits)	Damage by low weight	0.36	0.64	0.33	0.62	0.35	0.64
	Damage by thrips	0.35	0.60	0.34	0.62	0.34	0.60
	Exportation quality	0.33	0.58	0.37	0.65	0.32	0.58

Inheritance of Rootstock Effects in Avocado

 We identified significant rootstock effects for various harvest and quality traits (*i.e.* total number of fruits, number of fruits with low weight, number of fruits damaged by thrips, and number of fruits with exportation quality).

Inheritance of Rootstock Effects in Avocado

- We identified significant rootstock effects for various harvest and quality traits (*i.e.* total number of fruits, number of fruits with low weight, number of fruits damaged by thrips, and number of fruits with exportation quality).
- The only morphological trait that we found having a significant heritability value mediated by the rootstock was **trunk height**.

Inheritance of Rootstock Effects in Avocado

- We identified significant rootstock effects for various harvest and quality traits (*i.e.* total number of fruits, number of fruits with low weight, number of fruits damaged by thrips, and number of fruits with exportation quality).
- The only morphological trait that we found having a significant heritability value mediated by the rootstock was **trunk height**.
- These findings suggest the inheritance of rootstock effects on a surprisingly wide spectrum of 'Hass' avocado traits.

• This research is, up to date, the most **cohesive evidence** of inheritance of rootstock effects in any fruit tree.

- This research is, up to date, the most **cohesive evidence** of inheritance of rootstock effects in any fruit tree.
- Further heritability estimates should be gathered using a diverse panel of **clonal rootstocks** and **new traits**.

- This research is, up to date, the most **cohesive evidence** of inheritance of rootstock effects in any fruit tree.
- Further heritability estimates should be gathered using a diverse panel of **clonal rootstocks** and **new traits**.
- **Genotyping-by-sequencing** will enable us understanding the genetic architecture of rootstock-mediated traits.

- This research is, up to date, the most cohesive evidence of inheritance of rootstock effects in any fruit tree.
- Further heritability estimates should be gathered using a diverse panel of **clonal rootstocks** and **new traits**.
- **Genotyping-by-sequencing** will enable us understanding the genetic architecture of rootstock-mediated traits.
- This work reinforces the importance of considering the rootstockscion interaction to enhance our understanding of the consequences of grafting and speed up fruit tree breeding programs.

jGracias!