Proceedings VII World Avocado Congress 2011 (Actas VII Congreso Mundial del Aguacate 2011). Cairns, Australia. 5 – 9 September 2011

Avocado Pollination – by Honeybees or by Wind?

Gad Ish-Am Tzafon Agricultural R & D, and Ohalo College, Katzrin, Israel

Emi Lahav Acco Regional Experiment Station, Israel

A major question remains re avocado pollination:

What is the relative contribution of wind *vs*. honeybees (and other insects)?

Or: is it necessary to introduce honeybee hives into avocado orchards to ensure pollination?

<u>Davenport (2003 and more)</u>: Wind is the major avocado pollination agent in Florida.

<u>Ying, Davenport *et al.* (2009):</u> Wind, and not honeybees, is the main avocado pollinator also in California.

The purpose of this study was:

to determine the relative importance of honeybee activity and wind in the pollination of avocado trees under a Mediterranean climate

Methods (1)

<u>Location</u>

Avocado orchard, Western Galilee, Israel

<u>Cultivars and trees</u>

<u>Five cultivars</u>: Hass, Reed (flower group A) Ettinger, Fuerte, Nabal (flower group B) <u>Five trees in full bloom</u> (next to a pollenizer tree) for each cultivar, per season.

Observation seasons and days

<u>Seven seasons:</u> 1982 - 1984, 1989 - 1992, <u>Nine days</u> per season.

Meteorology data

<u>Two stations</u>: inside the orchard, and in an open field next to the orchard.

Methods (2)

<u>Temperatures</u>

Daily max, min and average. <u>Wind velocity</u> Maggining average 20 min from 08:00

Measuring every 30 min, from 08:00 to 18:00. Recording daily max and average.

Honeybee density

<u>Number of bees per tree</u>, counts every 30 min during the day, for each tree. Recording daily "Max bee density" for each cv.

Flower stages

Recording open flower stages every 30 min for each tree.

Rates of pollination

Sampling 50 styles per cultivar every 60 min. Checking "Percent pollination" under a light microscope.

Recording daily "max percent pollination" per cv.

Methods (3)

Simulation of wind effect

'Hass' & 'Fuerte' male flowers were subjected to changing wind velocities under lab condition. Pollen drift was recorded using a stereoscope.

<u>Statistical analysis</u>

- 1. Data from the 7 years were pooled.
- 2. Daily "Max percent pollination" of the 5 cultivars was pooled and analyzed vs.:
- Daily "max bee density"
- Wind velocity (daily max or average)
- Temperature (daily max or average)
- Cultivar

3. "Max percent pollination" of each cultivar was also analyzed against "Max bee density" and wind velocity.

Results (1)

Wind velocity in the field

Maximum wind velocity (61 observation days): Open field - 9.7 m/sec; Inside the orchard - 4.5 m/sec.

Simulation of wind effect

<u>Wind velocity of up to 10 m/sec</u> No pollen dispersal from the male flowers. <u>Wind velocity of 10 to 14 m/sec</u> Few pollen dispersed from the male flowers. <u>Wind velocity of 14 to 16 m/sec</u> Pollen dispersal from all male flowers.

High wind velocities caused pollen dispersal mainly in clusters.

Anther of 'Hass' male flower

Results (2)

<u>Effects on "Percent pollination" of the 5 cultivars</u>

"Honeybee density" – high significant positive effect (P < 0.0001). "Wind velocity" – no effect, neither of max, nor of average velocity. "Average daily temperature" – positive effect (P = 0.020). "Cultivar" – significant effect (P = 0.012).

<u>Effects on "Percent pollination"</u> <u>of each cultivar</u>

<u>Honeybee density:</u> significant positive effects.

<u>Wind velocity:</u> neither daily max, nor average wind velocities had any effect.

'Hass' female flower pollinated stigma

Results (3)

"Percent pollination" of 'Hass' is affected by: "Honeybee density" - a high significant positive effect (*P* < 0.0001). "Wind velocity" - no effect (*P* = 0.10).

'Hass' percent pollination vs. honeybee density and wind velocity

Discussion

the avocado flower - a typical insect pollinated flower

- Nectar secretion by both gender flowers.
- Small stigma and small amount of pollen.
- Flowers are colorful and have scent.
- Large, sticky pollen grains.

Female Phase ('Reed')

Male Phase ('Fuerte')

The avocado pollen grains are large and sticky

Ettinger pollen grains

Ettinger pollen grains attached to the open valves

Experiments of pollination under net

Flowering tree under net, with no bees: no fruits, or very few fruits (1-3% of un-caged trees).

Flowering tree + pollenizer tree under net, with no bees: few additional fruits (4-6% of un-caged trees).

Flowering tree under net, with bees: numerous fruits.

<u>Sources:</u> numerous works from California, Israel, South Africa, and Yucatán.

<u>Flowering tree under net,</u> <u>with bees + pollenizer next</u> <u>to net:</u> numerous fruits, of which only 7% (3-14%) are cross.

Source: Degani et al., 2003

Measurements of avocado air-borne pollen

Very low quantities, mostly as clusters. 'Ettinger' pollen floats up to 25 m. <u>Source:</u> Katz, 1995

No correlation between wind velocity and air-borne avocado pollen amounts.

<u>Air-borne pollination rates in</u> <u>caged trees:</u>

2.5%-4.7% in trees next to a pollenizer tree.

0.6% pollination in a secluded 'Ettinger' tree.

'Hass' flowering, honeybee activity and fruit set - Israel, spring 1992

<u>Source:</u> Ish-Am and Eisikowitch, 1998

Honeybees transfer the pollen

Avocado pollen carried on a honeybee's body

Source: Ish-Am and Eisikowitch, 1993

Pollen and stigma touch same locations Male flower Female flower

Forehead transfer

Ventralthorax transfer

Honeybees are efficient pollinators, but...

Vithanage (South-West Australia, 1990):

Honeybees are the most available efficient avocado pollinator. <u>Two beehives/hectare</u> increased yield (3.5-fold), comparing to no hives. <u>Three beehives/hectare</u> further increased productivity by 20% to 38%.

<u>Ish Am et al. (Israel, 2000):</u> Adding bumblebee hives increased yield, and mainly increased cross-yield in trees that are distant from pollenizer.

<u>Ish Am & Gazit (Mexico, 2002):</u> Eight local Meliponinae species are more efficient pollinators than honeybees.

<u>Conclusion</u>: the need for numerous honeybees. Average pollination rates are affected by:

Source: Ish-Am and Eisikowitch, 1998

Conclusion: our work, plus other works, invalidate the claims of Davenport and his colleagues.

Adding hives

necessary

necessary

necessary

recommended

may be helpful

not needed

ne

d

e

Recommendation: monitoring honeybee activity, and adjusting honeybee-hive density accordingly:

		Bees per tree	Close- fruit set	Cross- fruit se
		0	none	none
		1-4	Very few	none
		5-9	few	none
		10-25	many	few on tl 1 st row
		26-55	many	on 1 st an 2 nd row
	Source: Ish-Am, 2005	More than 55	many	up to th 4 th row

Thank youn