SUPPRESSION OF AVOCADO RIPENING WITH NEW PALLADIUM-PROMOTED ETHYLENE SCAVENGER

L. Terry^{1*}, <u>M. Meyer¹</u>, N. Reay² T. Ilkenhans³, S. Poulston³, L. Rowsell³, and A. W. Smith³

¹Plant Science Laboratory, Cranfield University, Bedfordshire, MK45 4DT, UK. ²H L Hall & Sons Ltd., Mataffin Farm, Nelspruit Mpumalanga South Africa ³Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading, Berkshire, RG4 9NH, UK. E-mail: I.a.terry@cranfield.ac.uk (L.A. Terry).

The control of ethylene in stored environments plays a key role in prolonging the life of many fresh produce types. However, there has been a paucity of research in recent years on developing novel and more effective ethylene scavenging materials. In this study a palladium (Pd)-promoted powdered material that has significant ethylene adsorption capacity (4162 μ l g⁻¹ material) at 20 °C and approx. 100% RH was identified and was shown to be far superior to KMnO₄ when used in low amounts and in conditions of high relative humidity (RH).

Initial screening was carried out in a plug flow reactor with 200 μ I Γ^1 ethylene, 10% (v/v) O₂ balanced with He at approx. 100% RH. Further work demonstrated that the Pd-promoted material at 0.03 g Γ^1 effectively scavenged both exogenously administered (100 μ I Γ^1) and/or endogenously produced ethylene by avocado, respectively, to sub- μ I Γ^1 concentrations within a 24h period. Optimum ethylene adsorption capacity was calculated as approx. 10000 μ I g⁻¹. Accordingly, corresponding inhibition of ethylene-induced ripening was observed. When removed, Pd-material did not disrupt subsequent ripening. The results from this study demonstrate that Pd-promoted material has commercial potential.