Preliminary Results from Avocado Rootstock Research in Australian

A.W. Whiley, F.R. Giblin, K.G. Pegg & D.G. Whiley

Webber (1926) observed "no factor of the avocado industry is more important than rootstocks, and there is no problem that we know less about, or which requires a longer time to solve."

 Over time we have learnt about rootstock effects on salinity, alkalinity tolerance and nutrient uptake

 Most effort has been invested in searching for *Phytophthora* root rot resistance – the most serious disease of avocado trees

Phytophthora root rot – a New Encounter Disease

No evolutionary history between host and pathogen

Useful commercial Pc tolerance exists

Combine Pc tolerance with responsiveness to phosphonate

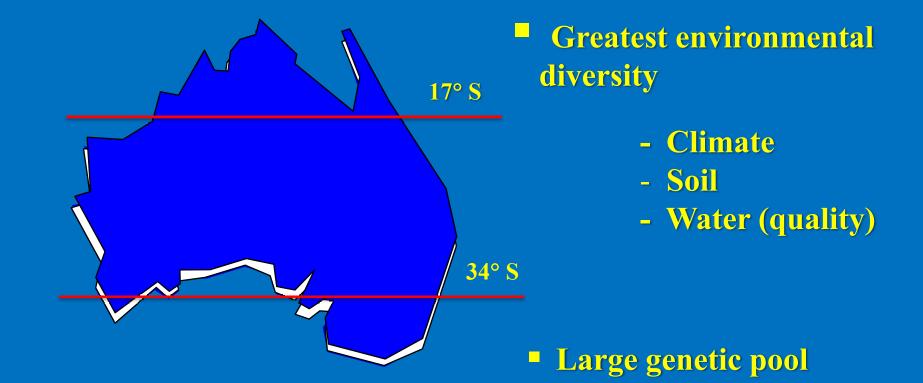
Combine Pc tolerance with productivity

Horticultural vs Physiological Graft Compatibility

Three botanical races – Mexican Guatemalan West Indian

Horticultural graft compatibility Physiological graft incompatibility

Effect of Graft Union on Root Growth


Rootstock Influence on Tree Physiology

Velvick' has twice the leaf diene conc. of
'Duke 6' and is translocated to the Hass
scion Coates *et al.* 2003

 Rootstocks change mineral nutrition profiles in fruit
Coates *et al.* 2003

Project Opportunities

 Evaluate rootstocks from the three botanical races grafted to Hass and Shepard

Genetic diversity

Mexican

'Barr Duke' 'Duke 7' 'SHSR - 01' 6P19 'Toro Canyon' 'Thomas'

Hybrids **'A10' 'SHSR – 03' 'Zutano'**

6A8 'SHSR - 02' 'SHSR - 04' 'Nabal' 'Peasley' **'Reed**

Guatemalan

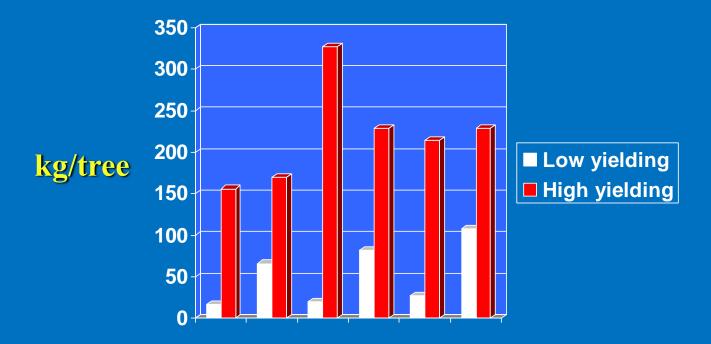
'Velvick' 'Gema' 'Maoz' **'SHSR - 06'**

'Plowman' **'SHSR - 05'**

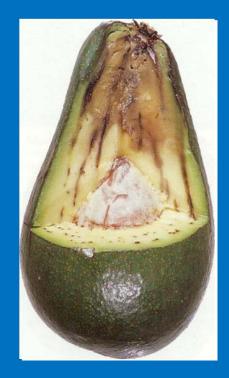
- Evaluate rootstocks from the three botanical races grafted to Hass and Shepard
- Evaluate both seedling and clonally propagated rootstocks from the same maternal source

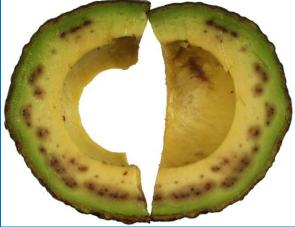
Seedling vs. Clonal Rootstocks

High relative cost of nursery trees on cloned rootstocks


Strong evidence required to shift industry to cloned material

- Evaluate rootstocks from the three botanical races grafted to Hass and Shepard
- Evaluate both seedling and clonally propagated rootstocks from the same maternal source
- Identify and evaluate superior rootstocks for consistent high yield and root rot tolerance


Identify and evaluate superior rootstocks for consistent high yield and root rot tolerance


Source: Thomas (1997) Aust. Avocado Conf. Proc.

Evaluate the effect of rootstock on postharvest disease development in fruit

- Evaluate the effect of rootstock on postharvest disease development in fruit
- Evaluate the effect of rootstock on postharvest storage and physiological fruit disorders

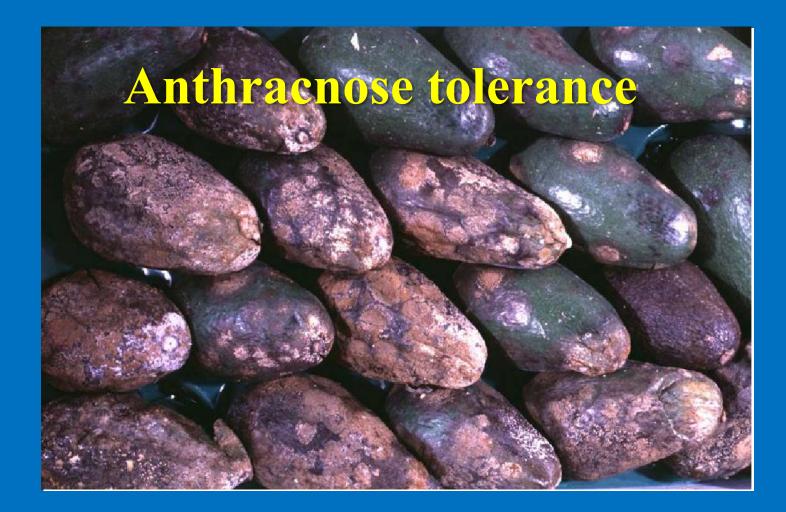
Results

Collection of Growth Data

Yield and Production Efficiency

Hass at Walkamin 2007

Rootstock (seedling)	Yield (kg/tree)	Yield efficiency (kg/m ³)
A8	2.42	0.70
A10	3.00	0.72
Barr Duke	4.23	0.66
Duke 7	3.98	1.52
SHSR-01	3.36	0.44
Nabal	2.43	0.68
Reed	4.40	5.04
SHSR-03	3.49	0.53
Velvick	6.24	0.59
Zutano	4.84	0.91


Yield and Production Efficiency

Hass at Walkamin 2007

Rootstock (clonal)	Yield (kg/tree)	Yield efficiency (kg/m ³)
A8	0.89	0.34
A10	0.62	0.24
Barr Duke	0.41	0.23
Duke 7	2.89	1.07
Hass	0.26	0.29
Nabal	0.00	0.00
Reed	0.00	0.00
Thomas	2.00	0.62
Velvick	2.79	1.03
Zutano	0.61	0.19

Results

Anthracnose Tolerance by Race

Anthracnose Tolerance by Race

Highly susceptible (5) Very resistant (0)

Anthracnose Tolerance by Race

Botanical variety x resistance

<u>Rst</u>	Race	Rating	Rst	Race	Rating
B. Duke	Μ	5 ⁶	Hass	GxM	2 ª
Duke 7	Μ	5 ⁶	SHS 2	GxM	2 ª
Parida	Μ	5 ^b	A8	G	1 ^a
SHS 1	М	5 ^b	SHS 3	G	0 ^a
Thomas	М	<mark>5</mark> b	Nabal	G	0 ^a
T Canyon	М	<mark>5</mark> b	Reed	G	1 ^a
Zutano	M x G	4 ^b	Plowman	G x WI	0 ^a
A10	G x M	2 ^a	SHS 4	WI x M	1 ^a
Edranol	G x M	3 ^{ab}	Velvick	WI	0 ^a

Rootstock Effects on Postharvest Anthracnose

Clonal Rootstocks

<u>% Marketable Fruit</u>

Duke 7	M	27.7 b
Hass	GxM	21.5 b
SHSR - 03	GxM	36.3 b
Velvick	WI	70.6 a

Evaluation of Phytophthora Root rot Tolerance

Protocols for Establishing Trees in High-pressure Disease Site

- Drench nursery bags prior to planting with 8% phosphonate solution
- Treat tree sites with Ridomil® granules prior to planting
- Apply 20% phosphonate + 2% Pulse® to trunk bark every 8 weeks

Rootstock Performance Under High Pc Pressure

Rootstock

GE (clone) AUS Hass (clone) USA **Dusa (clone) SA** Velvick (clone) AUS Velvick (seedling) AUS **Duke 7 (clone) USA** Latas (clone) SA **Reed (seedling) USA**

Mean health rating (1yr) 2.0^d 2.1^{cd} 3.5bcd 4.0bcd 4.3abcd 4 Aabed **5.0**^a 6.8^a

Rating scale 0-10 where 0=healthy and 10=dead

One-year-old cloned Hass - on its own-roots

One-year-old cloned GE Rootstock Grafted to Hass

Performance of Merensky clones (Dusa and Latas) may have been compromised by *Cylindrocladium* which was isolated from roots

Mean Trunk Canker Ratings From Shepard Trees Grafted to Different Rootstocks

Barr Duke	2.2 ^a	M
Duke 7	2.0 ^{ab}	М
Thomas	1.8 ^{ab}	М
Shepard	1.2 ^{abc}	M x G
Zutano	0.7 ^{bc}	M x G
A10	0.0 ^e	G x M
Nabal	0.0 ^e	G
Smerdon	0.0 ^e	G x M
Velvick	0.0 ^c	WI

LSD $(0.05) \le 1.4$

Eco-evolutionary Reasons for Development of Disease Tolerance Mechanisms

Mexican - 16°C, 786 mm

Guatemalan – 19.6°C, 1394 mm

West Indian - 28°C, 1137 mm

Source: The Avocado – Botany, Production and Uses (2001)

Conclusions

Differences between races in susceptibility of leaves to anthracnose

Conclusions

 Differences between races in susceptibility of leaves to anthracnose

Possible differences between races when used as rootstocks on postharvest anthracnose in fruit

Conclusions

 Differences between races in susceptibility of leaves to anthracnose

- Possible differences between races when used as rootstocks on postharvest anthracnose in fruit
- Differences between races when used as rootstocks on susceptibility to Phytophthora trunk canker

Acknowledgements

The rootstock research project is supported by Avocados Australia Ltd and the Australian Federal Government through its agency HAL

