South African Avocado Growers' Association Yearbook 1998. 21:52-53

# Foliar Application of Uniconazole (Sunny) to Avocado Trees to Improve Fruit Size and Yield and to Change Fruit Shape

### H.D. Erasmus & W.H. Brooks

Dow Agrosciences Sanachem, P O Box 127, Letsitele 0885

## ABSTRACT

Foliar sprays of Uniconazole on Fuerte avocados led to substantial increases in yield but fruit size in general was not affected. Sprays were made at an early flowering stage at concentrations of 1.0-1.5%.

On cultivar Hass a general increase in yield and fruit size was observed resulting in higher percentages of the prime fruit counts 12, 14, 16 and 18. Applications were made at full bloom at 1.0% concentration. Pinkerton gave similar results to Fuerte. Fruit shape was changed on all cultivars from long, necky fruit to shorter, rounder fruit.

#### INTRODUCTION

The small-fruit problem in Hass is one of the Avocado industry's main headaches. Several researchers are busy in different fields of research to try and find an economical, acceptable way to increase Hass fruit size. These include breeding, pollination, cincturing, pruning, irrigation, nutrition, mulching, etc. In this study a Plant Growth Regulator, Uniconazole, was tested on different avocado cultivars.

## MATERIALS AND METHODS

Trials were conducted on cultivars Fuerte, Pinkerton and Hass in the production areas of Levubu, Tzaneen, Burgershall/Hazyview as well as Natal. Applications were made by handgun in all cases except one, where a mistblower application was made on Pinkerton trees:

| Uniconazole 50 S<br>Spray pressure | C (Sunny 50SC)<br>20Bar                                          |
|------------------------------------|------------------------------------------------------------------|
| Disc size 1mm                      | 2020                                                             |
| Spray volume                       | 500 - 1200e/ha depending on tree size                            |
| Dosage                             | 0,7% (Pinkerton); 1,0% (Hass) and 1,0-1,5% (Fuerte)              |
| Flowering stage                    | Fuerte: One flowerlet per panicle on hot side open               |
|                                    | Hass: One flowerlet per panicle on cold side open                |
|                                    | Pinkerton: As for Fuerte                                         |
| Adjuvant UP 50                     | (Urea Phosphate 500 SL) was added to all treat-<br>ments at 2.0% |
| Evaluations                        | Fruit weight was determined on electronic scales                 |
|                                    | Fruit size was obtained from electronic weight                   |
|                                    | sizers in standard Avocado packhouses.                           |
|                                    | Fruit shape was determined from a Fruit shape                    |
|                                    | index (FSI) where1.0 is the longest (neckiest) and               |
|                                    | 5.0 the shortest(roundest) fruit.                                |
|                                    |                                                                  |

## **RESULTS AND DISCUSSION**

Fruit shape was changed in all three cultivars as is shown in table 1. Only in the case of Hass was there a meaningful increase in fruit size with no increase for Pinkerton and a slight increase for Fuerte.

Fruit size increase and yield increase for Hass in four production areas is shown in tables 2-5. The prime counts 12, 14 and 16 were all higher in the case of Sunny treated trees compared to the untreated controls. Yields (marketable cartons) were higher in all four cases.

In table 6 the yield of Fuerte in Levubu is shown for two consecutive seasons. Although the 1997 yields are substantially lower (the off year) than the previous year, there was an even bigger difference between treated and untreated trees.

Total yield in Hass was generally not affected 1 by the Sunny treatments as table 7 illustrates. There was, however a huge difference in the exportable yields of treated trees. This difference was caused mainly by the increased fruit size in treated plots. In contrast to Hass, Fuerte and Pinkerton showed increases in both export and total yields. Hass was treated at a relatively late flowering stage, after early fruit/flower drop, because of a natural tendency to overbear. The late sprays could therefore not improve fruit retention and thus only fruit size was increased.

| CULTIVAR | TREATM.                 | F.S.I.     | MASS (g)   | COUNT    |
|----------|-------------------------|------------|------------|----------|
| HASS     | SUNNY 1,0%<br>Y CONTROL |            | 275<br>221 | 14<br>18 |
|          | SUNNY 1,7%<br>X CONTROL | 3.9<br>1.7 |            | 12<br>12 |
| FUERTE   | SUNNY 1,0%<br>X CONTROL | 4.1<br>2.1 | 320<br>302 | 12<br>14 |

| CULTIVAR  | TREATM.    | F.S.I. | MASS (g) | COUNT |
|-----------|------------|--------|----------|-------|
| HASS      | SUNNY 1,0% | 4.5    | 275      | 14    |
|           | Y CONTROL  | 2.3    | 221      | 18    |
| PINKERTON | SUNNY 1,7% | 3.9    | 321      | 12    |
|           | X CONTROL  | 1.7    | 314      | 12    |
| FUERTE    | SUNNY 1,0% | 4.1    | 320      | 12    |
|           | X CONTROL  | 2.1    | 302      | 14    |

Table 2. Fruit size distribution and yield of Hass trees on 755 Rootstock in Natal

|         |         | Hass tr  | ees in Bur | gershall | -       |        |
|---------|---------|----------|------------|----------|---------|--------|
|         |         | SUNNY 1, |            | CONT     | ROL     |        |
|         |         | %        | %          |          | %       | %      |
| COUNT   | CARTNS. | CARTNS.  | GROUPS     | CARTNS.  | CARTNS. | GROUPS |
| 10      | 98      | 3.9      | 3.9        | 2        | 0.1     | 0.1    |
| 12      | 635     | 25.0     |            | 58       | 3.2     |        |
| 14      | 838     | 33.0     | 78.3       | 230      | 12.9    | 37.3   |
| 16      | 515     | 20.3     |            | 386      | 21.6    |        |
| 18      | 283     | 11.1     |            | 484      | 27.1    |        |
| 20      | 102     | 4.0      | 15.1       | 238      | 13.3    | 40.4   |
| 22      | 51      | 2.0      |            | 122      | 6.8     |        |
| Under   | 18      | 0.7      | 2.7        | 266      | 14.9    | 21.7   |
| CART/ha | 2540    |          |            | 1786     |         |        |

Fuerte and Pinkerton was treated at an early flowering stage to improve fruit retention to ensure more fruit and therefore increased total as well as export yield as shown in table 7.

|                   | SUNNY 1,<br>%<br>CARTNS.              | %                                                                      |                                                      | CONT<br>%                                            |                                                      |
|-------------------|---------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 10                |                                       | GROUPS                                                                 | CARTNS.                                              |                                                      | %<br>GROUPS                                          |
| 40                | 1.1                                   | 1.1                                                                    | 16                                                   | 0.5                                                  | 0.5                                                  |
| 331<br>940<br>937 | 9.0<br>26.1<br>26.2                   | 61.3                                                                   | 31<br>113<br>426                                     | 0.9<br>3.4<br>12.8                                   | 17.1                                                 |
| 507<br>245        | 14.2<br>6.9                           | 21.1                                                                   | 648<br>548                                           | 19.4<br>16.4                                         | 35.8                                                 |
| 77 375            | 2.2<br>10.6                           | 16.2                                                                   | 220<br>1017                                          | 6.6<br>30.5                                          | 46.7                                                 |
|                   | 940<br>937<br>507<br>245<br>120<br>77 | 940 26.1   937 26.2   507 14.2   245 6.9   120 3.4   77 2.2   375 10.6 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

Table 5. The effect of Sunny on fruit size and yield of Hass trees in Levubu

|           |         |      | TREAT | <b>MENTS</b> |      |                |
|-----------|---------|------|-------|--------------|------|----------------|
|           | SU      | JNNY | 1,0%  |              | CONT | ROL            |
| COUNT     | CARTONS |      | %     | CARTONS      |      | %              |
| 12        | 168     | 16   |       | 24           | 3    |                |
| 14        | 335     | 32   | 77    | 121          | 13   | 45             |
| 16        | 307     | 29   |       | 255          | 29   |                |
| 18        | 166     | 16   |       | 281          | 31   |                |
| 20        | 46      | 4    | 20    | 117          | 13   | 44             |
| 22        | 19      | 2    |       | 63           | 7    |                |
| 24        | 9       | 1    | 3     | 26           | 3    | 10             |
| Cartn./Ha | 2040    |      |       | 1724         | 1000 | and the second |
| Kg/Ha     | 14490   |      |       | 12697        |      |                |

| COUN                 |                | D EXPORT YIE  | LD PREM      |
|----------------------|----------------|---------------|--------------|
| TREATMENT            | Kg/Ha          | Kg/ha         | K\$748       |
| SUNNY 1.5%<br>(1996) | 20600<br>15900 | 13180<br>9880 | 9400<br>7180 |
| CONTROL (1996)       | +4700          | +3320         | +2220        |
|                      | 15021          | 9544          | 6676.        |
| SUNNY 1.5% (1997)    | 9969           | 5637          | 3556         |
| CONTROL (1997)       | +5052          | +3917         | +3120        |

Table 6. The effect of Sunny on fruit size and yield Fuerte trees in Levubu in two consecutive years

Table 7. The effect of Sunny Total and Export yield of different cultivars in three production areas

|      | SUNNY<br>(Kg)                  | (Kg/Ha)                          | CONTRO                        | L (Kg/Ha                         | ) DIFFERE                        | ENCE                           |
|------|--------------------------------|----------------------------------|-------------------------------|----------------------------------|----------------------------------|--------------------------------|
| HASS | EXPORT                         | TOTAL                            | EXPORT                        | TOTAL                            | EXPORT                           | TOTAL                          |
|      | 10088<br>13692<br>8050<br>7484 | 35400<br>21603<br>11995<br>13266 | 6082<br>11692<br>6900<br>6324 | 36060<br>20991<br>13289<br>11727 | +4006<br>+2000<br>+1150<br>+1160 | -660<br>+612<br>-1294<br>+1539 |
|      | 9544<br>11600<br>3720          | 15021<br>20600<br>5650           | 5637<br>8800<br>2088          | 15900                            | +3907<br>+2800<br>+1632          | +5052<br>+4700<br>+3175        |
|      | 19800                          | 26408<br>24390                   | 16631<br>16631                | 22175<br>22175                   | +3175<br>+1661                   | +4233<br>+2215                 |

Table 8. Percentage increase in cartons for each upward shift in fruit size

| COUNT | % INCREASE |
|-------|------------|
| 10    | 20.0       |
| 12    | 16.7       |
|       | 14.3       |
| 16    | 12.5       |
| 18    | 11.1       |
|       | 10.0       |
| 22    | 9.1        |
|       | 0.0        |



Figure 1. Effect of Sunny on fruit size of Hass avocado in Burgershall



Figure 2. Effect of Sunny on Fruit size of Hass avocado Tzsaneen



In figures 1 and 2 the two count upwards shift in fruit size of Hass, is illustrated.

Increase in fruit size of especially Hass avocado, by whatever means, leads to a twofold benefit for the producer. Firstly, there was a substantial increase in number of cartons produced as shown in table 8. Secondly, export prices for larger fruit counts can be up to 50% higher than the prices obtained for smaller counts (figure 3).

## ACKNOWLEDGEMENTS

The authors wish to thank the following avocado producers for their cooperation and assistance during the trial periods:

Messrs. Vos Brothers, Burgershall; Mr. Basie Alberts, Burgershall; Mr. Dick Graham, Tzaneen; Mr. Hendrik Grobbelaar, Levubu and Mr. Dries Joubert, Levubu.