MOLECULAR BIOLOGY AND GENE REGULATION

Ethylene-Mediated Posttranscriptional Regulation in Ripening Avocado (Persea americana) Mesocarp Discs

E. L. Buse and G. G. Laties

Department of Biology, University of California, Los Angeles, Los Angeles, California 90024

Discs of avocado (Persea americana) fruit (15 x 3 mm thick) kept in a stream of moist air ripen within 72 h. Following cutting, a modest evolution of wound ethylene that dissipates in 24 h is followed by a burst of autocatalytic ethylene production associated with a respiratory climacteric, much as in the intact fruit. Aminoethoxyvinylglycine (AVG), an inhibitor of ethylene synthesis, and 2,5-norbornadiene (NBD) and Ag+, inhibitors of ethylene action, inhibit disc ripening, as does 2,4-dichlorophenoxyacetic acid (2,4-D), a synthetic auxin. On the other hand, none of the foregoing agents except Ag+, at concentrations that delay or prevent ripening, suppress the induction of four ripening-related genes encoding cellulase, polygalacturonase (PG), cytochrome P-450 oxidase (P-450), and ethylene-forming enzyme (EFE, or 1-aminopropane-1-carboxylic acid oxidase), respectively. Whereas Ag+ fully inhibits the production of cellulase and PG mRNAs, it has little effect on the induction of EFE and P-450 mRNAs. Cellulase and PG enzyme activities are absent in extracts of discs treated with AVG, NBD, or 2,4-D, as are antigenically detectable cellulase and PG proteins. The strong appearance of ripening-related mRNAs in discs inhibited from softening by ethylene antagonists suggests posttranscriptional control by ethylene. Similarly, inhibition of ripening by 2,4-D without suppression of mRNA induction suggests translational control. Whether ethylene inhibits transcription or postttranscriptional events or both depends on its concentration.