Beyond AvoGreen[®]

Dr Henry Pak, Toni Elmsly

Dr Kerry Everett

July 2009

What is AvoGreen®?

- AvoGreen[®] is an IPM system
- Sprays applied in response to monitored pest pressure
- Response thresholds for each pest
- Provides basis for justifying use of pesticides
- Saves costs by reducing unnecessary sprays and adds value by increasing packouts
- Why the need for change?

Why the need for change?

Where are we headed?

Forecast strong growth in volumes

- → Develop new markets target niche/premier markets for higher returns
- → Produce fruit with all market access

Consistent, high **QUALITY** is a **necessity** for entry to premier markets

What is Quality?

Traditionally

\rightarrow Grade

Freedom from rots

What is Quality?

In future

What lies beyond?

Regulatory Drivers:

 ERMA, HASNO, Emissions Trading, Regional Councils

Customer Drivers:

• Food miles, carbon labels, supply programmes e.g. GlobalGAP, Walmart Sustainability Index

GAP = Good Agricultural Practice

Need to look at all aspects of production systems including SUSTAINABLITY

Plant & Food

Plugging the GAP

Good Agricultural practice

- AvoGreen[®] provides a strong platform to build on
- Increased emphasis on justifying use /reduce pesticide inputs where required
- Major issue for avocados in New Zealand is copper use

Copper – a dilemma

- Heavily reliant on regular copper fungicides to control rots = major quality problem.
- Why copper?
 - Cheap
 - Effective
 - No market access issues
- But.....

Copper - a dilemma

- Copper is a heavy metal.
- Ecotoxic in soluble form.
- Readily binds to clay particles and organic matter:
 - Forms insoluble complexes that are tightly bound to soil and very stable

 \rightarrow accumulates in soil over time.

- Establish baseline soil copper levels in avocado orchards
- Investigate alternatives to copper for rot control

Soil Survey Procedure

- 203 soil samples collected from 165 orchards.
- Sampled range of different tree ages.
- Measured Total and Extractable copper.
- Obtained information on:
 - Land use history
 - Historical copper fungicide use
 - Tree age.

Frequency distribution of total soil copper

Previous surveys

NZ wide 1999 - 19 orchards:

mean 170 mg/kg range 70 – 480 mg/kg

Holland and Solomona (1999)

Auckland 2002 - 43 orchards: mean 209 mg/kg range 7 - 490 mg/kg

Gaw (2002)

<u>Australia 2002 (NSW avocados):</u> range 280 - 340 mg/kg

Merrington et al (2002)

Regional differences

Comparison of standard soil test (Mehlich 3 = extractable) versus total soil copper:

Soil retention is strongly influenced by regional soil characteristics

Productivity

• The core question regarding sustainable use of copper is:

Does soil copper have an influence on orchard yields?

Total soil copper does not affect avocado crop yield

Soil survey summary

- Copper is accumulating in soils.
- Average copper levels in avocado soils is lower than previous studies but range is comparable
- Strong regional relationships between total copper and extractable copper governed by soil types.
- No apparent impact of soil copper on productivity.

Is there an alternative?

- 12 orchards
- 20 trees in randomised block design
- Shirlan, Pristine, Copper, Untreated
- 5 single tree replicates
- 8 monthly applications
- Harvested in November 2008

Spray trial results

Treatment	% rots	P value	% efficacy
Pristine	33	<0.0001	50
Shirlan	46	<0.0001	31
Copper	49	<0.0001	27
Untreated	67		

N=4720

Alternatives summary

- Both Pristine and Shirlan more biodegradable than copper
- Shirlan is as effective as copper, Pristine is more effective
- Either could be used in alternation with copper to reduce soil loadings
- But neither registered in NZ

Conclusion

- Have to position ourselves for ever increasing customer demands on "quality"
- AvoGreen[®] needs to evolve into a GAP-based system to address sustainability requirements
- Workable options for reducing copper use together with ongoing monitoring of soil levels
- Continue to rely on copper programmes in the interim

Acknowledgments

Funding for this project was provided by MAF SFF and AGA

Many thanks to all those growers who participated in the survey and allowed field trials on their properties

Thank you

