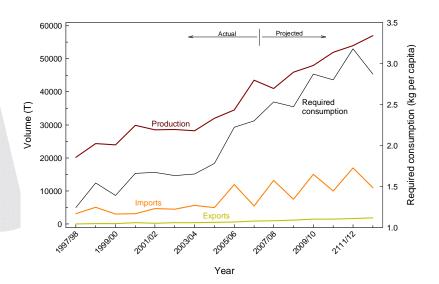
Exporting Australian avocados:

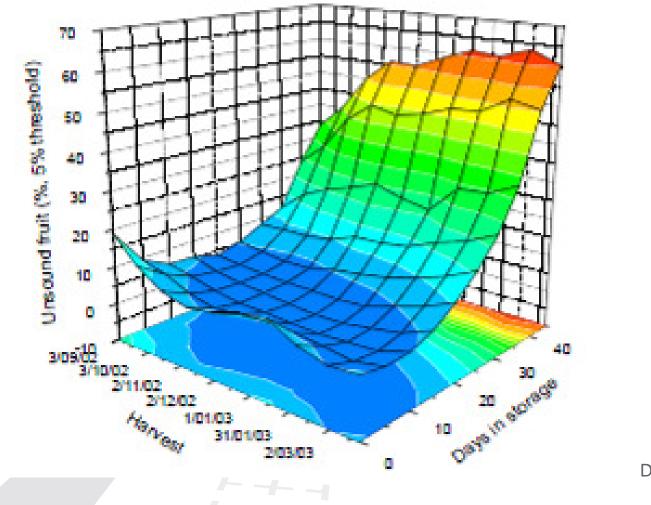
Challenges, options and research

Peter Hofman and Roberto Marques


Queensland Primary Industries and Fisheries

How to get there – the cost/quality balance!

- Air
 - Generally expensive
 - Maintains quality
- Sea
 - Cheaper
 - May compromise quality because of longer times (10-40 days)
- Combinations of air and sea
 - Intermediate cost and quality risks
 - Greater logistical challenges



© The State of Queensland, Department of Employment, Economic Development and Innovation, 2009

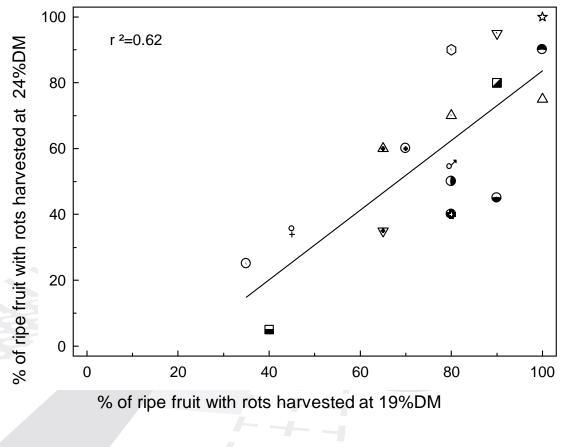
Seafreight - the tyranny of time

Cold storage at 4°C

Dixon et al. (2003)

The need for best practice from field to fork

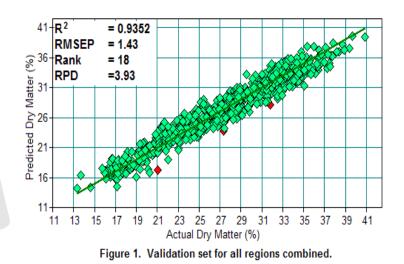
- Based on Hazard Analysis
 - Draft stage
 - Will be refined at end of season
 - Will be the basis for information guides/training material


Predicting outturn quality-which fruit to export

- Disease load in the orchard
 - Everett (2003) using leaf discs
- Fruit "robustness"
 - Nitrogen
 - Calcium
 - Iron
 - Maturity
 - C7 sugars?

Predicting outturn quality – the Avotest

- Harvest sample fruit weeks before shipping
- Combines inoculum load and fruit robustness



Le Lagadec et al. (2008)

Predicting using non-destructive means

- E.g. near infrared spectroscopy (NIRS)
- It can sort for dry matter/ moisture content in the lab
- Can NIRS sort for:
 - rots?
 - more even ripening? (Blakey 2009)
 - Poster by Burdon et al.

Wedding et al (2008)

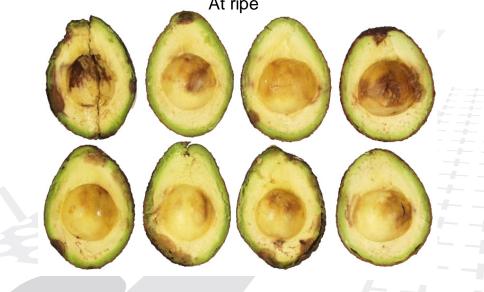
© The State of Queensland, Department of Employment, Economic Development and Innovation, 2009

In the container.....the key variables

- 1. Temperature
- 2. Atmospheres
- Humidity
- Low oxygen and high carbon dioxide
 - Reduces respiration rate
 - Two main "control" systems
 - Controlled atmospheres full active control
 - Modified atmospheres
 - Relies on fruit respiration and a "membrane" to restrict gas movement
 - MA packaging plastic bags etc
 - Maxtend
 - The reefer container is the "membrane"

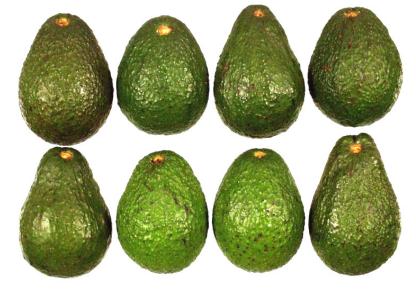
1. Temperature

- Can we store below 4-5°C?
 - Risk -discrete patches
 - Benefits less flesh defects
 - Conditioning before storage
 - 3-4 days at 4-6°C
 - Eliminates discrete patches for 20-25 days at 1°C
 - Good cold disinfestation treatment in transit'
 - Also improves internal quality
 - Not sure about longer than 25 days
 - Not tested in combination with CA

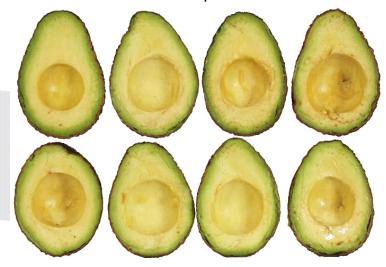


Not conditioned

At removal from 1 °C for 16 d



At ripe



Conditioned

At removal from 1 °C for 16 d

At ripe

© The State of Queensland, Department of Employment, Economic Development and Innovation, 2009

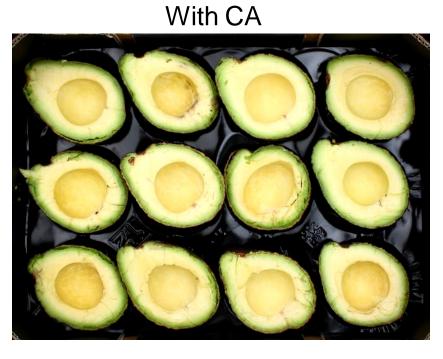
2. Atmospheres

- Humidity
 - Reduces fruit weight loss
 - Controlling water loss from harvest reduces risk of fruit "ripening" in store
 - Can reduce flesh defects
 - New containers have larger evaporator coils
 - Allows >90% RH
- Oxygen and carbon dioxide
 - Literature reports ranges of 2-4% O₂ and 4-6% CO₂
 - Recent static trial gave excellent results after 42 days

Queensland Primary Industries and Fisheries

Controlled atmospheres

Without CA


YYYYYY

Grower 1

Grower 2

©Т

Ways to "control" the atmospheres

Full control

- Nitrogen generator to flush out excess O₂
- Introduce air if O₂ gets too low
- Flush with air/nitrogen to reduce CO₂ buildup
- Recent improvements
 - CA system integrated into container
 - Increased cargo space
 - Smarter atmosphere control AFAM+
 - Better use of air and generator gases
 - More powerful CA units
 - establish CA more quickly

Ways to "control" the atmospheres

Dynamic CA

- Determine best O₂
 concentrations by measuring fruit
 behaviour during storage
- Adjust O₂ concentrations to just above damaging levels
- Currently only used for land storage in apples etc
- Promising results with avocados (Burdon *et al* 2007&8)

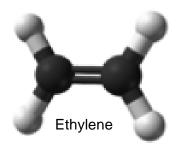
Ways to "control" the atmospheres

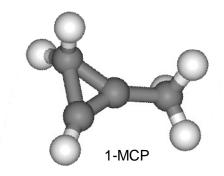
• "Hybrid system - Maxtend

- Uses fruit respiration to reduce O₂ concentrations
- Introduces air when O₂ concentration gets too low
- Absorbs excess CO₂ using satchets
- Similar performance to full CA, but can be cheaper

Include CO₂ absorber

Seal the container


Flush with nitrogen

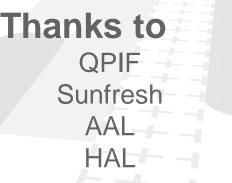

Install the Maxtend controller

SmartFreshSM

- 1-MCP
- Similar molecule to ethylene but different enough
 - blocks ethylene from starting the ripening process
- Applied as a gas soon after harvest
 - Cool fruit
 - Treat with about 0.5 ppm for about 20 hours
 - Handle/store/seafreight as usual

Smartfresh - potential

- Internal quality often as good as with CA
- But:
 - variable ripening
 - Can get more disease with longer ripening
- Use only during mid-late maturity? (SA)
- Maybe sort with NIRS for even ripening


No SmartFresh

Other potential advances

- RFID
 - Tracking container movements
- In transit fruit behaviour monitoring
- Infrastructure improvements
 - Maintaining the cold chain
- Logistics scheduling
 - Reducing time from harvest to sale

