

Optimising concentrate spray applications on avocados

Robyn Gaskin, David Manktelow & Henry Pak

FUNDAMENTAL AND APPLIED RESEARCH IN PLANT PROTECTION

PPCND

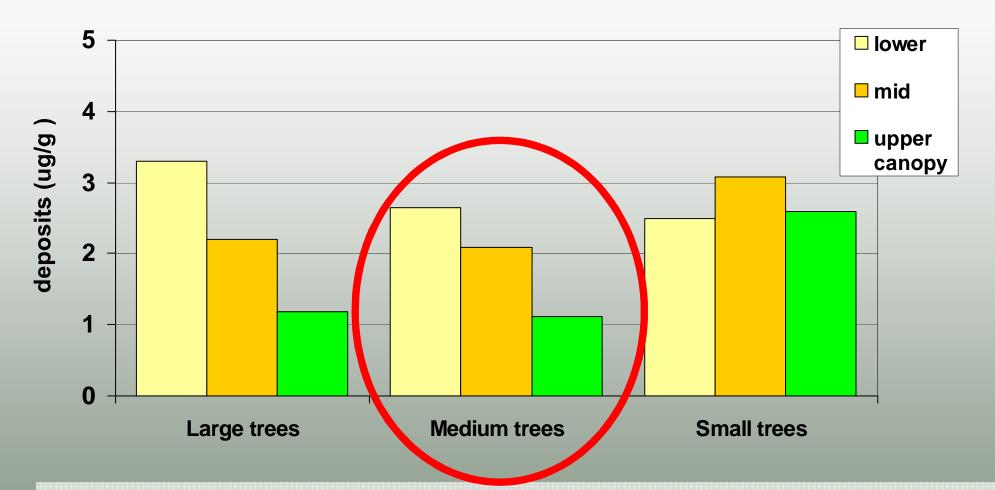
Avocados as spray targets

- Irregular tree sizes and spacing
- Canopy per hectare highly variable
- Many options for driving patterns
- Difficulty in communicating application rates
 both those required and those used
- Need to understand variability in order to optimise spray application efficacy and efficiency
- Three year MAF Sustainable Farming Fund project
 - to determine the most effective technology for pesticide application based on reduced water rates using superspreader adjuvants



1. Grower survey & Deposit benchmarking

- Three distinct tree sizes on NZ orchards
- Usually treat with single sided sprayers, dilute to runoff
- 'Nominal' spray volumes 1000-3000 L/ha
- Limited concentrate spraying, by air
- 4 commercial sprayers x 3 tree sizes
- Constant rate of copper per 100 L
- Measured deposits


Understanding variability Application rates and deposits

Copper deposits on *fruit* in different sized trees

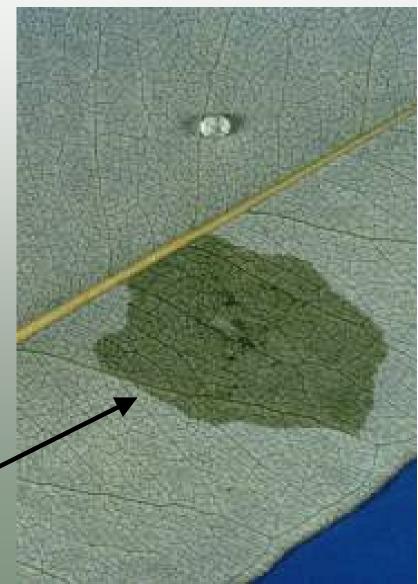
Tree size								
Large >10m Medium 5-7m Small <4m								
Volume	Deposit	Volume	Deposit	Volume	Deposit			
L/ha	µg/g	L/ha	µg/g	L/ha	µg/g			
5000	2.2	2700	2.0	2100	2.7			

Highest volumes consistently provided lowest deposits!!

Understanding variability Fruit deposit variation within trees

- In med-large trees, upper canopy deposits only 40% of lower canopy
- Inner canopy deposits typically only 50% of outer exposed canopy

Understanding variability

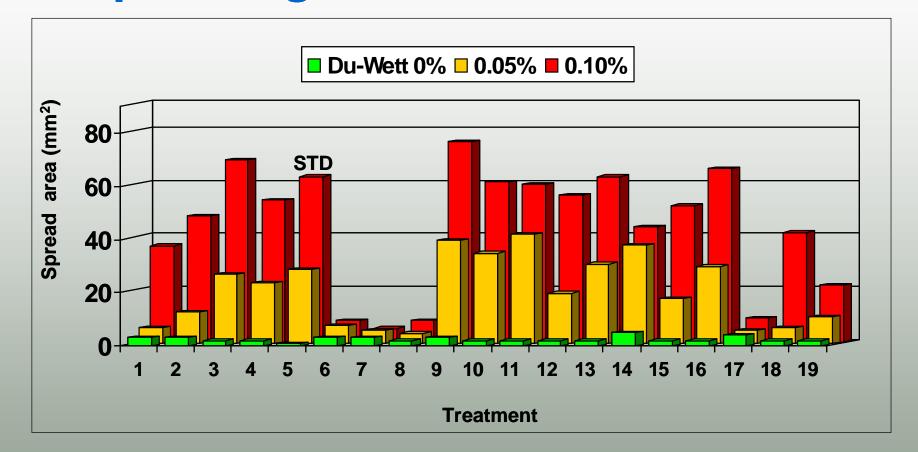

2. Variation in surface wettability of targets

		mature leaves		you	young leaves		fruit		flowers	
		upper	lower	upp	er	lower	old	young		
S	Sept									-
	Nov									
	Jan									
М	arch									
	July								diuns	ncial
July diuvants beneficial										
		our code fo ce wettabi		asy	mo	derate	difficu	If V	very ficult	

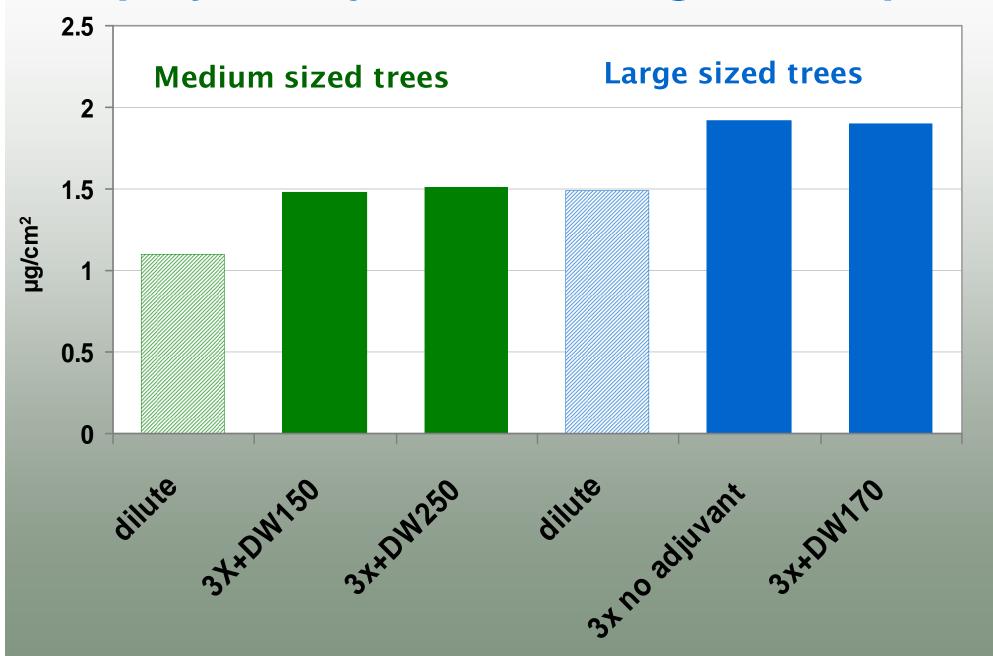
Spray adjuvants

- High surface tension = poor droplet adhesion/retention and poor surface coverage
- Adjuvants that lower surface
 tension = improved retention of
 spray droplets and good coverage
 of plant surfaces: e.g.
 organosilicone superspreaders

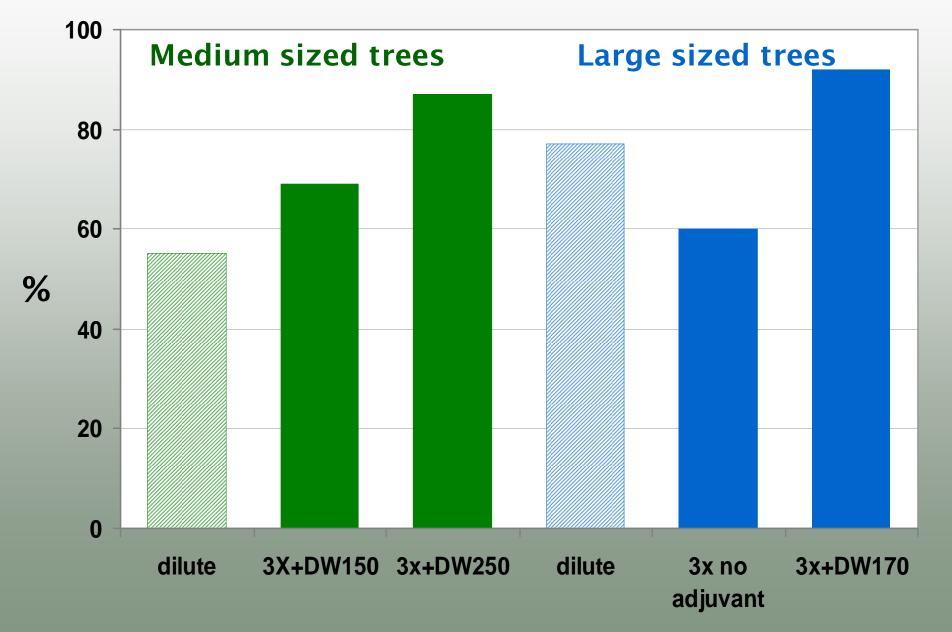
Leaf undersides very difficult to wet



Organosilicone blend superspreader (<u>Du-Wett®</u>) improves spray coverage, makes water go further


- ✤ Not for use in high volume sprays as get loss via excessive runoff
- For avocados, 3- 5X concentrate sprays were likely the best

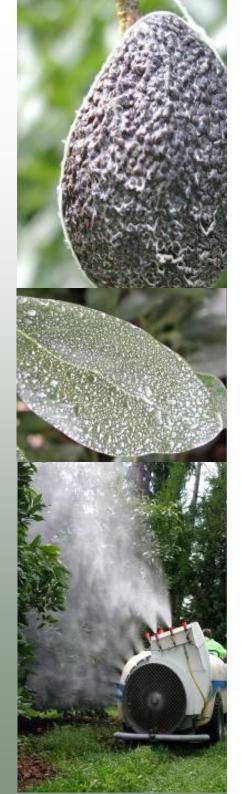
Pesticide formulations affect Du-Wett spreading on avocado upper leaf surface



 Ability of adjuvants to superspread affected by in-can pesticide formulation
 DOSE RATE CHARTS prescribe Du-Wett adjuvant use for all agchems approved for use on NZ avocados


3. Comparison of dilute vs concentrate sprays ± adjuvants: average leaf deposits

Deposits on inner as a proportion of outer canopy zones



Deposits on upper canopy as a proportion of mid canopy deposits

Orchard field trials summary

- Deposits from concentrate sprays significantly higher than dilute
- 3X concentration of sprays provided highest and most even deposits in all tree sizes
- Addition of Du-Wett adjuvant improved deposits from concentrate sprays and spray distribution on trees

4. Commercial orchard trials

- Comparison of 3x concentrate + DW sprays *versus* growers' conventional dilute programmes;
 - all sprayers calibrated,
 - concentrate volumes prescribed,
 - adjuvant use rate prescriptions provided for all sprays
- Different sized trees, paired blocks, 2 orchards, at least 1 full year, no aerial sprays
- Pest & disease monitoring orchard & packhouse
- Residue analyses at harvest

Commercial orchard trials

Northland: AvoGreen monitoring of large trees (>18 years)

Spray programme	LR Larvae on % fruit	LR Larvae on % leaves	Mite eggs on % leaves	SSM on % leaves	Thrips on % fruit
Control dilute	0	5	23	21	0
3x Concentrate + adjuvant	0	4	19	19	0

Data is mean of all monitor periods

Commercial orchard trials

BOP: AvoGreen monitoring of large trees (>15 years)

Data is mean of all monitor periods

Spray programme	LR Larvae on % fruit	LR Larvae on % leaves	Mite eggs on % leaves	SSM on % leaves	Thrips on % fruit
Control dilute	0.5	1.5	0.4	1.3	0.25
3x Concentrate + adjuvant	0.1	0.25	0	0.6	0.25

Commercial orchard trials Packhouse Packout Reports

Orchard programme	Sample size (kg)	% in Grade analysis			
		Export	Local	Reject/oil	
Northland Large trees					
Control dilute	2412	81	17	2	
Concentrate+adjuvant	2130	75	23	2	
BOP Large trees					
Control	3080	70	27	2.8	
Concentrate+adjuvant	2290	87	12	1.6	
BOP Small trees					
Control	833	72	27	0.8	
Concentrate+adjuvant	830	91	9	0.9	

Commercial orchard trials Residue analyses

Orchard programme	Residues (mg/kg)						
	chlorpyrifos-ethyl			pirimiphos-methyl			
	Sept Oct		Jan	Sept	Oct	Jan	
Northland Large trees							
Control dilute	0	-	-	0.026	-	-	
Concentrate+adjuvant	0.016	-	-	0.042	-	-	
BOP Large trees							
Control	-	0.24	-	-	0.014	-	
Concentrate+adjuvant	-	0.30	0.19	-	0.040	0.014	
BOP Small trees							
Control	-	-	0	-	-	0	
Concentrate+adjuvant	-	-	0.034	-	-	0	

Chlorpyrifos: MRL = 0.5 ppm Pirimiphos: MRL = 0.1 ppm

Tailoring Pesticide Application to Avocado Canopies

- Best Practice technology for applying concentrate sprays has been developed
- Requires identification of appropriate volumes (dilute & concentrate) to treat avocado canopies
- Requires calibration of sprayers to accurately deliver 3x concentrate sprays
- Requires use of specialist superspreader adjuvants and Du-Wett® Dose Rate Tables for all products applied
- Will save growers time & money, and improve fruit quality & returns

3x conc 730 L/ha

AVOCADO

Spray Volume Quick Reference Guide TABLES for dilute and 3x concentrate sprays

- 1. Find spray volume required per 100 m of row for your tree height & canopy density
- 2. Find sprayer output volume (L/min) per 100 m of row at your travel speed (re-nozzle sprayer for concentrate sprays)
- 3. Find spray volumes/ha at your row spacing, using output volume (L/100 m travelled)
- 4. Make up your tank mix of agrichemical products and count total kg or litres of products/ha; for CONCENTRATE sprays use adjuvant at rates/ha stated on Du-Wett® chart

Funded by MAF Sustainable Farming Fund & Avocado Growers Association with major contributions from Elliott Technologies Ltd

All growers & contractors who helped with their equipment, trees & time

