

School of Engineering & Advanced Technology

Robotics in Horticulture

C. L. Flemmer, R. C. Flemmer and A. J. Scarfe

Southern Cross Robotics Ltd.

RoboticsPlus Ltd.

We need horticultural robots

Horticultural tasks are arduous, expensive and it is difficult to get and retain labour

• Industrial robots are common, agricultural ones are not (except the automatic field harvester)

Existing robotic fruit/veg pickers

- Greenhouse robots
 - Pick cucumbers (45 s), mushrooms, lettuce and strawberries (10 s)
 - Stationary robotic fertilizer & sprayer with moving potted plants
 - None commercially viable except Romobility Youto strawberry picker (Japan)
 - <u>http://www.youtube.com/watch?v=Fcvhtn7l2qw&feature=</u>
 <u>related</u>

•Orange-picking robot (Italy early 1980's)

- 2 tonne tracked vehicle
- telescopic arms with camera and blade mounted in the gripper
- manually driven to start of grove
- uses GPS way points to navigate along the grove
- pick time 8.7 seconds (no wind), % picked unknown
- fruit placed in bin?

•Apple-picking robot (Belgium, 2004)

- manually driven tractor drives Panasonic robot to tree, stabilizes robot platform, shrouds tree
- suction cup with camera at centre picks apples
- harvests 80% of apples with pick rate of 9 seconds
- manual handling of picked fruit

Massive Financial Support

- Vision Robotics (San Diego, 2002)
 - Scout robot forms a 3D map of the location and size of fruit (oranges)
 - Picking robot with 8 arms
 - Design phase only
 - \$5M

•US Dept. of Agriculture

-\$10M funding in 2008 to Carnegie Mellon University for

research into robotics for apples (\$6M) and oranges (\$4M)

-Goal: to navigate rows and recognize fruit in 3 years

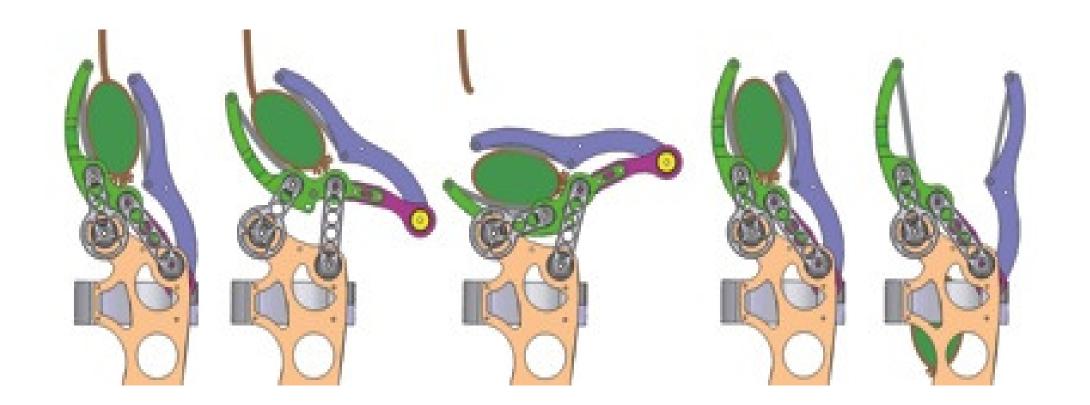
The Problems

- navigation (to the orchard, within the orchard) GPS, intelligent computer vision
- chassis design robust, cheap, all terrain, all weather, all tasks
- intelligent vision which makes sense of the target (fruit, trunk,etc.) obscured by other fruit or foliage
- sophisticated design of the robot arm and end effector/gripper
- intelligent produce handling
- robot must perform many different tasks (pick, prune, bud count, pollinate, fruit count)
- general intelligence re-fuel, load/unload bins, function autonomously (end of row, stump in the way, dirty camera, rain, light level)

The autonomous kiwifruit picker

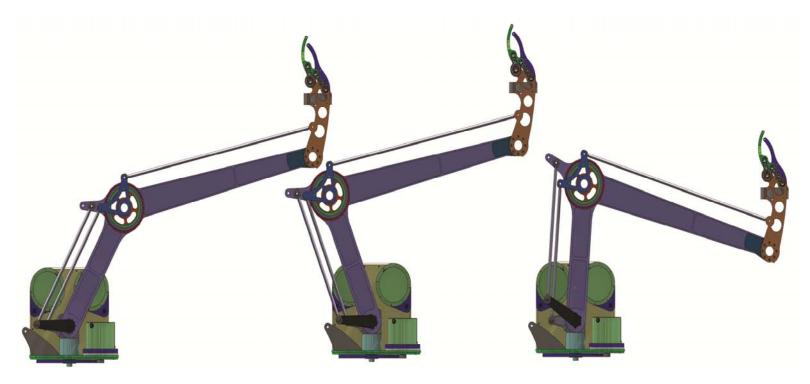
Navigation

- GPS to navigate to orchard
- Computer vision to:
 - recognise poles and walk along the avenues picking
 - 3-point turn to pick both sides of the row
 - navigate around the 'dead man' at the end of the row
- Maximum speed 5km/hr



Keeping an eye on the fruit

- 8 colour webcams, auto-iris lenses and framegrabbers look at the canopy and use stereopsis to get the coordinates of the fruit.
- 2 webcams look at the bin and map its surface height




Picking hand

Robot arms

- Off-the-shelf robot is too expensive, too heavy and too unfriendly
- Custom-designed arms (4) are light, simple, cheap.
- Programmed to do a 'go to' move and a 'pick' move
- Pick time 1 second (each arm), 1/4 second

The Future

- Pick for the 2010 season
- Extend intelligent vision only pick fruit of the correct size and shape, discard defective fruit.
- Collect data on harvest rate, fruit damage, orchard yield, percentage 'good' fruit, etc.
- Interact with packhouse communicate the quantity, size and quality of fruit as it is being picked. Receive instructions from the packhouse on what to pick.
- Implement other applications: pruning, pollination, bud count, fruit counts