

Session Seven Flowering, fruit set and yield

New Zealand and Australia Avocado Grower's Conference'05 20-22 September 2005 Tauranga, New Zealand

The California Cross Pollination Experiment - A Progress Report

Mary Lu Arpaia University of California

Historical perspective – avocado pollination in California

The early days – 1920's

 Recognition of floral dichogamy – Stout – A and B flower types

Recognition of the importance of pollinators – Clark – Caging studies

The next steps – Bergh, Garber and Gustafson

 Recognition of proximity effects in trials looking at Fuerte fruit set as a function of distance from pollinizer varieties

 Recognition of the potential of the honeybee as a pollinator for avocados

Status by the end of 1970's

- Native vegetation wild honeybees plentiful
- No significant use of introduced hives
- When used, growers did not pay for honeybees
- Beekeepers place hives in avocado groves following almond pollination
- Honeybees were not kept in groves for entire flowering period
- Some controversy over the need for pollinizer varieties

Steps backwards – 1980's

- The rise of Hass as the dominant variety and subsequent loss of value of "greenskins"
- The introduction of varroa mite and decimation of feral honeybees
- RESULT Loss of pollinizers and pollinators throughout the industry

Rekindling of interest – 1980's and 90's

- Loss of productivity industry wide
- International Research focused on pollination/pollinizers
 - Sedgley Flower stages, temperature and fruit set
 - ✤ Robbertse et al Boron and fruit set
 - Köhne, Robbertse pollination in South Africa
 - Davenport flowering and pollination in Florida
 - Degani, Gazit et al importance of cross pollination and fruit retention
 - Vithanage visitors to avocado flowers
 - Ish-Am, Eisikowitch honeybee behavior
 - Ish-Am, Gazit searching for the native pollinator of avocado

Understanding and manipulating flowering and fruitset in California

- Funding of research by the industry Focused on the Plant
- Genetic analysis for determining outcrossing
 - Ellstrand (isozymes); Clegg (RFLP, microsatellites);
 Davenport/Schnell (microsatellites)
- Shifting flowering
 - Salazar-Garcia, Lovatt (Gibberellins, boron)
- Selection of new varieties as pollinizers for Hass
 Bergh et al (SirPrize, BL667, BL516)
- Pollinizer Trials
 - Arpaia et al (DeBusschere Pollinizer Trial)

Understanding and manipulating flowering and fruitset in California

Funding of research by the CA industry - *Focused* on the Pollinator

Honeybee visitation and other pollinators

- Visscher and Sherman

Honeybee races

- Hofshi (Carniolan vs Italian)
- Fetscher, Waser, Hofshi, Arpaia (perseitol to monitor pollination efficacy) has led to collaborative research with Israel – Shafir, Dag, Arpaia, Davenport

Figure 3. Total volume of crop contents (μ L; mean + SE) of foragers caught upon return to their hives from Italian (IT) and New World Carniolan (NWC) colonies placed in a California avocado orchard (CA2), in 2000. Numbers above the error bars are the sample size. The type of bloom visited by a given forager was inferred by the presence or absence of perseitol in the crop sample.

Appreciating **Proximity** once again

DeBusschere Pollinizer Trial – Coastal Ventura County

													NORTH	-													
		1											ROW								1						
	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50		
		х	×	X	х	x	x	x	x	x	x	x	Х	Х	x	Х	х	x	×	х	х	х	×	x	x	1	
				ET						67						F						Z					
		Х	X	X FT	X	×	X	X	X	X 67	×	X	X	X	X	X E	X	X	X	X	х	X 7	X	X	×	2	_
		х	x	X	x	х	×	Х	x	X	х	×	x	x	х	X	x	с	с	x	х	X	x	Х	×	3	
				ET						67						F						Z					
		Х	×	X ET	х	X	х	Х	X	× 67	х	х	×	×	Х	X E	х	0	0	x	Х	X	×	Х	х	4	
		х	X	х	х	Х	X	Х	х	х	Х	X	х	х	Х	х	х	Х	х	х	Х	×	х	Х	х	5	
				ET						67						F						Z					Eucalyptus V
		X	X	× FT	×	X	X	X	×	× 67	X	X	×	×	Х	F	×	X	×	X	Х	× 7	×	X	×	6	
		х	x	х	х	х	х	х	x	X	х	х	х	х	х	×	х	С	с	х	х	×	х	х	х	7	
	Poplar			ET						67						F						Z					
Wi	ndbreak	Х	X	× FT	х	X	×	X	×	× 67	X	×	×	×	Х	×	х	0	0	х	х	× 7	×	X	х	TREE #	
		х	х	x	х	х	х	х	х	×	х	х	х	х	х	×	х	х	х	х	х	×	х	х	х	9	
				ET						67						F						Z				40	
		X	X	FT	x	X	X	X	X	× 67	X	X	×	×	X	F	x	X	×	×	Х	X 7	×	X	х	10	
		х	х	Х	х	х	х	х	х	x	х	х	Х	Х	х	x	х	х	х	х	х	x	х	х	х	11	
				16						HV						В						SP				40	
		X	X	× 16	х	X	×	X	X	HV X	X	×	×	×	х	B	х	X	×	×	х	X SP	×	X	х	12	
		х	х	x	х	х	х	х	х	×	х	х	×	×	х	×	х	х	x	х	х	×	x	х	х	13	
				16						HV						В						SP					
		X	X	× 16	х	X	x	X	X	HV	X	x	X	X	Х	B	х	X	×	x	Х	SP	×	X	x	14	
		Х	X	Х	Х	Х	X	Х	х	X	Х	X	Х	Х	Х	Х	Х	Х	х	х	Х	Х	х	Х	Х	15	
				16						HV						В						SP				46	
		X	X	16	X	X	X	X	X	HV	X	X	X	X	Х	B	X	X	X	X	X	SP	X	X	X	10	
		х	х	Х	х	х	х	х	х	Х	х	х	х	х	х	Х	х	х	x	х	х	Х	х	х	х	17	
		v	v	16	v	v	v	v	v	HV	v	v	v	v	v	B	v	v	v	v	v	SP	v	v	~	18	
		^		16	^	^		^		ĤV	^		^	^	^	B	^	^		^	^	ŜP		^			
		х	х	×	х	х	х	Х	х	х	х	х	х	х	х	×	х	Х	x	х	х	х	x	Х	х	19	
		×	×	16 ×	×	×	×	×	×	HV	×	×	×	×	x	B ×	×	×	×	×	x	SP ×	×	×	×	20	
		~		16	~	~	~		~	ĤV	~	~	^	^	^	B	~		^	~	~	SP	^		~	20	
	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50		
													SOUTH														
			Ettinger			16	BL 516			с	с	These a	i re Tom D	avenport's trees					x	These a	re the tre	∣ es that w	i re have he	een collec	i ctina vieli	d data from	
			BL 667	67 HV Harvest							c is tree	s trees that had closed cages during S															
			Fuerte			B	Bacon			0	0	o is tree:	s that we	re open o	controls c	s during Sp	ing 2003										
		2	Zulano			ъP	SirPrize																				

Pollinizer Varieties: 8 Field trial replicates: 6 Pollinizers interset with Hass 8 Pollinizer Varieties: Bacon, Ettinger, Fuerte, *Harvest*, Marvel, Nobel, SirPrize, Zutano

Poplar Windbreak

Eucalyptus Windbreak

Cumulative Data

Is there a proximity affect?

Is the distance affect influenced by year?

2002, n.s.; 2003, *; 2004, *; 2005, n.s.

Is there a Pollinizer Difference?

Yield for Rows 0 - 2 combined

Distance x Pollinizer Differences

Significant Differences between PZ for 'within row', N.S. at 7.6 or 15.2 m

Where do we go from here?

- 2 more years of yield data to be collected
- Summarizing flowering data (3 years) by phase within tree and individual flower
- Complete honey analysis
- Continue fruit quality measurements
 Dry weight, seed size, L/W

Trends in California

Honeybees

- Placement (on pallets)
- Honeybee race (???)
- Paying for bees (~\$18-30/hive)
- How many hives? (avg. 2-4 hives/HA, as high as 10)
- Keeping the hives for the entire flowering season

Trends in California

Planting multiple pollinizers in the same holeIncreasing the % of pollinizers and the placement of pollinizers

Goal: Maximize the opportunity for cross pollination

An example where Bacon, Zutano and Ettinger planted in same hole

