
Session Three Pest Disease Control Strategies, Integrated Production Systems and the Impact on Market Access

New Zealand and Australia Avocado Grower's Conference'05 20-22 September 2005 Tauranga, New Zealand

2005 New Zealand and Australian Avocado Growers Conference

Spotting bug management in avocados – A review

By Dr Henry Drew

HAL Project No. AVO4013 funded by Avocados Australia and Horticulture Australia

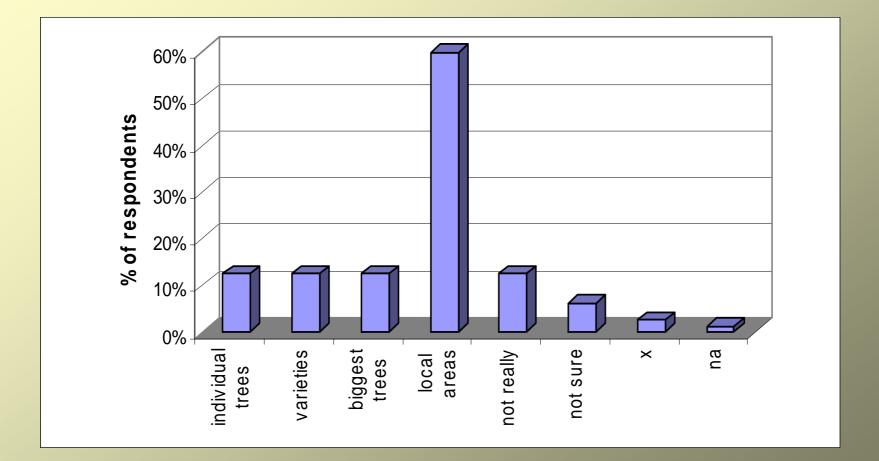
Spotting bugs (SB) in Australia

- Native coreid stink bugs.
- Two species overlap in most areas, Amblypelta lutescens and Amblypelta nitida.
- Attack green fruit and shoots.
- Pest of avocado, macadamia, mango, papaw, persimmon, lychee, citrus and passionfruit.
- Collected from over 200 plant species.

Project methodology

AN INDUSTRY AUDIT OF GROWER PRACTICES

- **Postal survey through Talking Avocados.** 80 growers producing 1.15 million trays
- Telephone survey. 50 growers
- On-farm visits by local consultants.
 20 growers in Central NSW, Northern NSW Mt Tamborine, Blackbutt, Sunshine Coast Bundaberg, Atherton Tablelands
- NSW DPI investigation of unsprayed property at Duranbah, northern NSW.


SB hotspots are real!

Geographic

- **On-farm**
- Highest in Palmwoods
 -Woombye area of
 Sunshine Coast and
 Alstonville area of
 northern New South
 Wales.
- Edge & local effects.
- Highest next to native habitat, particularly regrowth around watercourses.
- Preferred varieties Fuerte & Pinkerton.

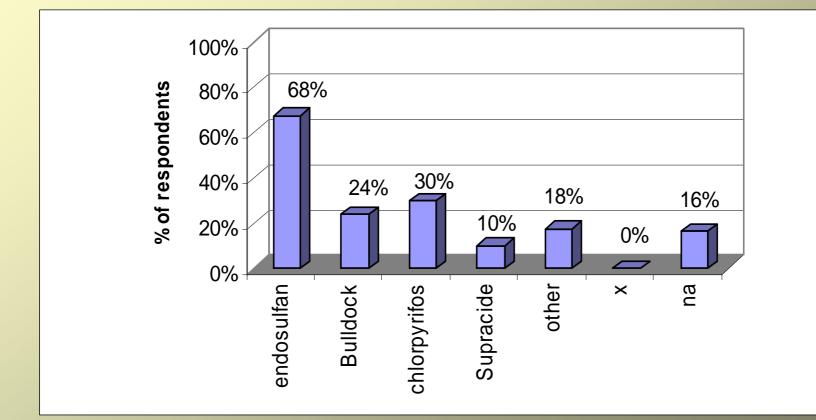
SB hotspot monitoring makes sense!

Factors contributing to SB hotspots

SB monitoring by growers

- 29% say they are carrying out monitoring for SB.
- 40% had seen nymphs & 65% had seen adults.
- 33% saw SB every year & 14% saw SB every month.
- However 66% could NOT tell difference between SB and Assassin bug nymphs & 41% could NOT tell difference between adults.

Surprisingly 65% said they could tell the difference between SB and QLD fruit fly damage.

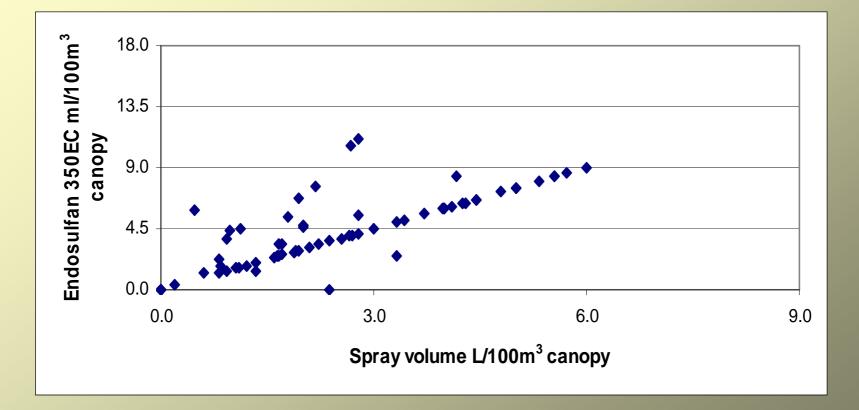

Growers spray practices

- 80% sprayed for insects & disease.
- 4% sprayed DISEASES only.
- 5% sprayed INSECTS only.
- 11% used no insecticide "organic" programs.

- 73% used airblast sprayers.
- 38% applied LESS than 6 sprays.
- 52% applied 6-10 sprays.
- 10% applied MORE than 10 sprays.

Chemicals used for SB control

Efficacy, residues, secondary pests, beneficials ...



Spray practices and Endosulfan use

- Average spray volume was 2.6 L / 100m³ of canopy.
- Only 4% were using a Dilute spray VOLUME equivalent to 6.0 L / 100m³.
- 64% used Dilute RATES.
- 19% used Concentrate RATES.
- 40% used less than 50% of the Dilute DOSE.
- 9% used more than 20 L / hectare per season.
- 50% used less than 10 L / hectare.

There is confusion on VOLUMES and RATES.

Spray volume and Endosulfan dose

9.0 ml Endosulfan / 100m³ canopy = DILUTE DOSE

Losses to SB versus spray costs

Percentage of respondents	Losses to SB LOW Less than 10%	Losses to SB <u>MEDIUM</u> 10-20%	Losses to SB <u>HIGH</u> More than 20%
Spray cost <u>NIL</u> \$0/ha	9.0	2.6	6.4
Spray cost <u>LOW</u> Less than \$100/ha	7.7	5.1	2.6
Spray cost <u>MEDIUM</u> \$100-300/ha	20.5	10.2	15.4
Spray cost <u>HIGH</u> More than \$300/ha	11.5	5.1	3.9
TOTAL	48.7%	23.0%	28.3%

RESEARCH ...

- ✓ Improved SB monitoring systems using pheromones or volatiles.
- ✓ Improved understanding of SB predation.
- ✓ Breaking the link between fungicide and insecticide sprays.
- Registration of a "soft" chemical option

EXTENSION ...

- ✓ Identification of SB nymphs and adults.
- Understanding Dilute / Concentrate rate concepts.
- ✓ Training for improved airblast sprayer setup and calibration.
- ✓ Preservation of predators.

