Future Management Strategies in Disease Control

K.G. Pegg, QHI

Time to Reflect

Phytophthora Root Rot

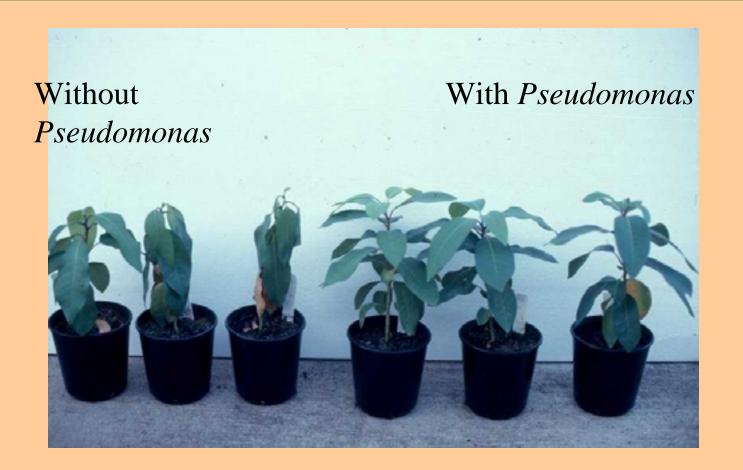
The early days to the 1980s:

• "muck and magic"

"Muck and Magic"

- straw
- chicken manure
- gypsum

"Muck and Magic"



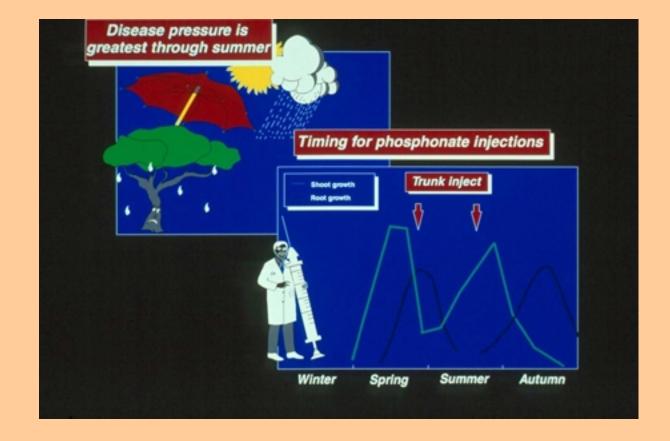
"Muck and Magic"

Biocontrol with *Pseudomonas* sp. in *Pc* infested soil

Phytophthora Root Rot

Since the early 1980s:

- trunk injections of phosphonates
- foliar applications of high concentrations of phosphonates



Trunk injection

Trunk injection

Fruit Diseases

Fruit Diseases

The early days to the 1980s:

- copper sprays (green skin varieties)
- prochloraz postharvest treatment
- ripening with ethylene
- ripening temperatures (17°C)

Fruit Diseases

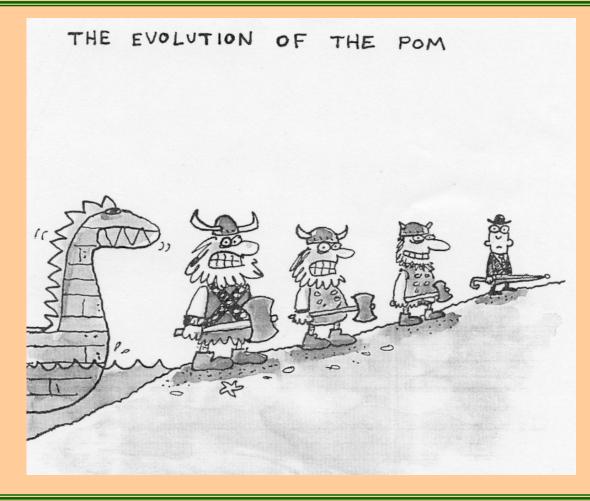
Since the 1980s:

- strobilurins
- antifungal compounds
- root stock effect
- influence of mineral nutrient concentrations in fruit
- biological control (yeasts & bacteria)

Sun Blotch

Sun Blotch

The early days to the 1980s:


 viroid - single stranded RNA containing 247 nucleotides

Since the 1980s:

• variants (246-251 nucleotides) detected in trees showing no symptoms

The Future - Designing the Way Ahead

Phosphonates

- The only reliable & cost affective tool until a resistant root stock is found
- Spraying is fraught with pitfalls:
 - more contaminating & ecologically damaging
 - relationship between crop phenology & partitioning & persistence of foliar applied phosphonates?
 - fruit may accumulate excessive phosphonate

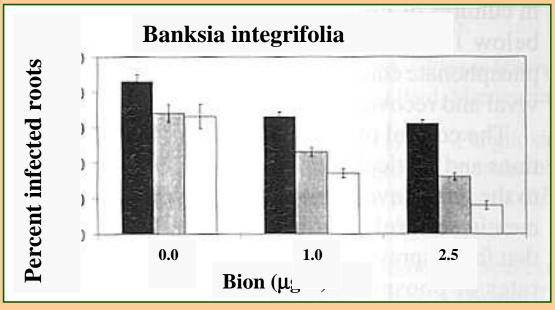
The Solution

- Reduce phosphonates by exploiting defence inducers
- Systemic Acquired Resistance
 - uses genes already present in plants
 - plants are resistant to most pathogens
 - defence genes present
 - speed of gene activation

Bion (0.05g/L)

- Cladosporium oxysporum (Co), passionfruit

Treatment	Scab Severity (1-5)
1. Untreated control	1.0 ^c
2. Inoculate with Co	4.8 ^a
 Inoculate with Co Bion 4 days later Co + Bion 	5.0 ^a
	2.4 ^b
 Bion then inoculate Co 4 days later 	2.0 ^b



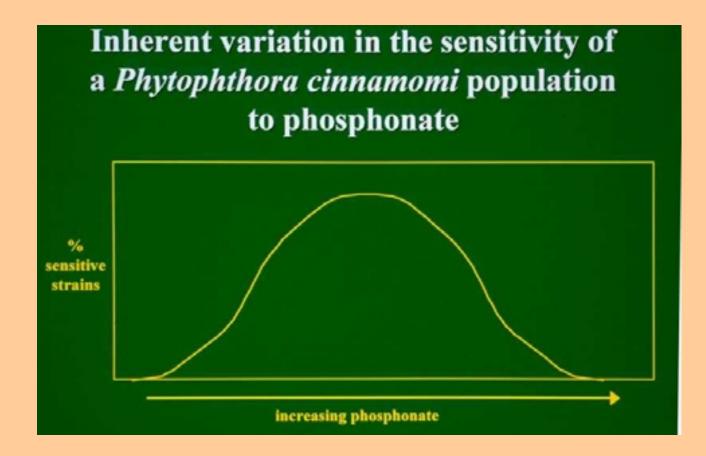
Field control of scab in passionfruit

Treatment	Fruit Scab (%)
1. Untreated control	70.8 ^a
2. Industry standard	45.0 ^b
3. Industry standard blocked with Amistar	28.3 ^{b,c}
4. Industry standard block with Amistar + Bion	9.2 ^d

Effect of potassium phosphonate & Bion on *Phytophthora cinnamomi*

(From Ali et al. 2000 APP 29:59-63)

- Both chemicals when used alone reduced disease
- Plants sprayed with both chemicals had significantly lower levels of root rot



Potassium Phosphonate and Bion

- Combination sprays may reduce selection pressure on *Phytophthora cinnamomi* in roots and soil, thus preventing a shift in sensitivity with the population becoming dominated by less sensitive isolates
- may require higher levels of phosphonate in roots for effective control

Phosphonate sensitivity

Phosphonate sensitivity

Aerial Spraying

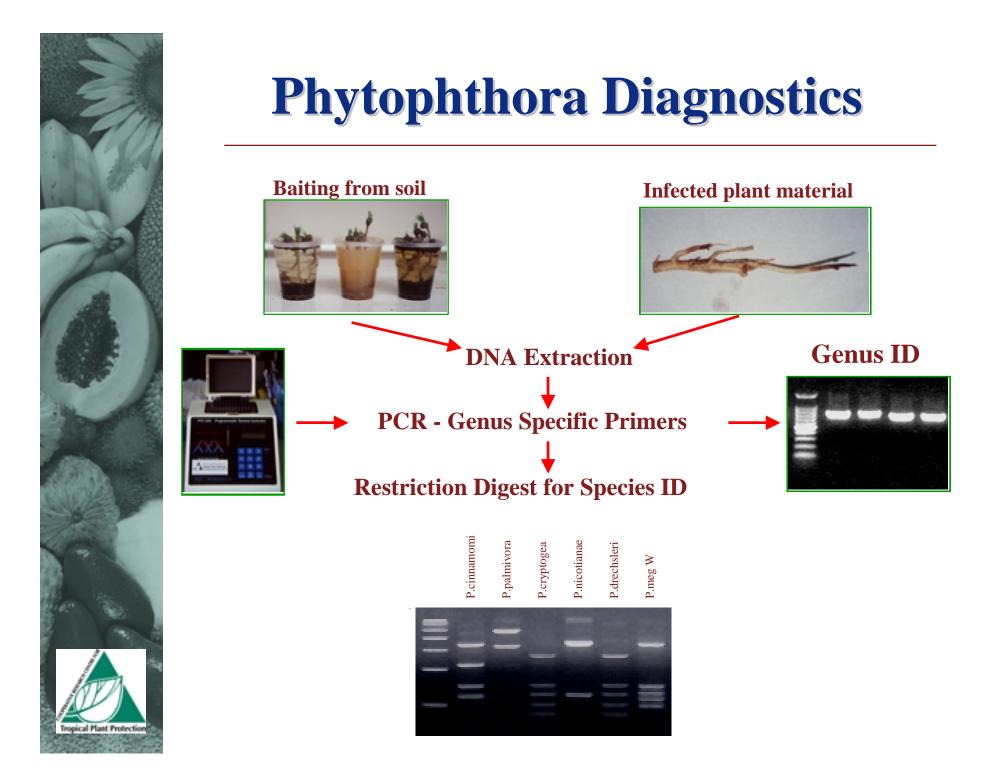
technology is well
developed for
natural ecosystems in
WA

• will require the use of adjuvants

Improving Fruit Disease Control

- solve with good pathology & physiology
- influence of rootstocks on antifungal compounds & mineral nutrients in fruit
- plant activators to boost levels of pre-formed & induced antifungal compounds
- develop prediction systems to avoid heavy use of chemicals

What has biotechnology delivered?


- molecular marker technology
- molecular diagnostics
- transgenic plants

Molecular Diagnostics

- technology invaluable to nursery industry
- PCR method for the rapid detection & identification of *Phytophthora* species
- highly sensitive RT-PCR assay for detection of sunblotch viroid

Transgenic Plants

- RoundupTM tolerance
- corn, cotton, canola, soybean protected by the Bt gene
- virus resistant plants (potato, papaw) by the introduction of virus coat protein genes
- for avocado, conceptually intriguing but will require much more work before it becomes a reality

• Look upon biotechnology as an important tool to value add but not displace traditional methods used in horticulture

Biological Control

- "muck & magic" to modify soils
- spray trees with nutrients (urea, yeast extract, molasses)
- innundative biocontrol apply effective biocontrol agents at specific times

Biological Control

No biological control then *Colletotrichum* gloeospirioides (Cg)

With biological control agent and then *Cg*

Biological Control

Major constraints

- cost of commercialisation
- inconsistent disease control in the field

Biological Control Products

- some 30 products (mostly *Trichoderma & Bacillus*) available for root diseases
- must overcome biological buffering capacity of soil (initial success due to high inoculum levels)
- cope with changes in abiotic environment
- not as effective as chemical control
- incorporate into integrated disease management practices

For the future...

- combine plant activators with phosphonate
- aerial application of phosphonates
- select rootstocks for *Pc* resistance & ability to reduce fruit rots
- plant activators to reduce fruit diseases
- computer-based prediction system to reduce heavy chemical usage
- use molecular technology to assist nursery industry
- develop biocontrol to form an integral component of disease management

