exciting solutions

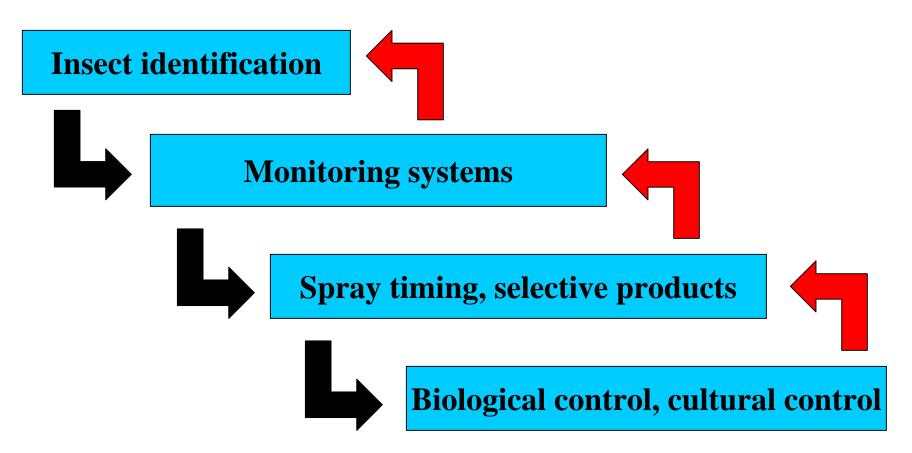
Development of an IPM Programme for avocados in New Zealand

Philippa Stevens, HortResearch, Auckland, New Zealand.

Pest Control in 2020

- Production of high quality fruit with 95% packout
- •Fruit meets all pesticide residue standards
- Routine monitoring of pests and beneficials
- •Experienced pest scouts available
- Proven action thresholds
- •No pesticide resistance
- •Selective pesticides available
- •Non-chemical means of control predominate
- •Ongoing research and improvements

The avocado pest management journey


Where we have been...

•Calendar spray progamme based on broad-spectrum products

Where we are going...

•IPM programme producing high quality fruit for all markets

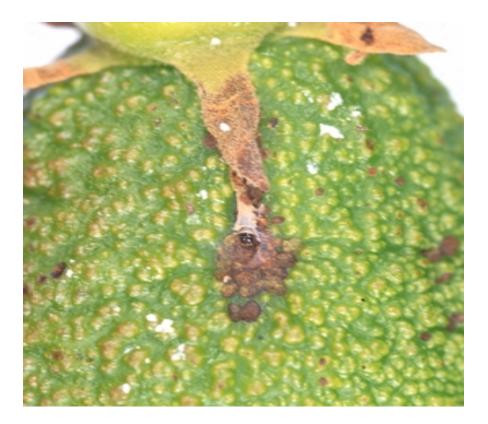
Developing an IPM system

Making the IPM vision a reality

- •To achieve the IPM vision involves many separate components
- Integration and implementation of the IPM vision needs to by a step-wise process
- •Some of the components of the IPM system will require longer term research, while others can be achieved over the short term.
- It is important not to focus on the shortterm components at the expense of those with a longer time frame
- •The New Zealand avocado industry has started developing and implementing the components but there is still a long way to go

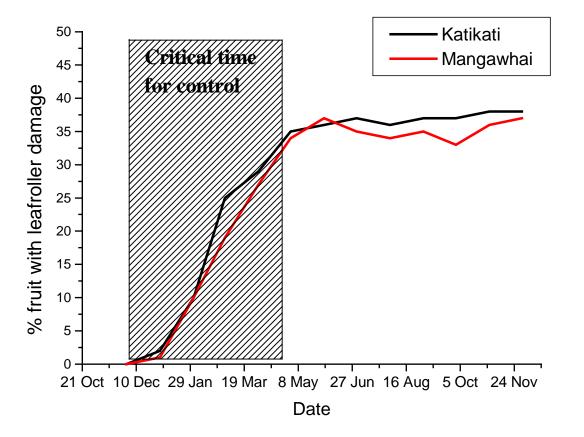
Pests of avocado in New Zealand

- •Leafrollers
- •Greenhouse thrips
- Armoured scale
- •Six-spotted mite

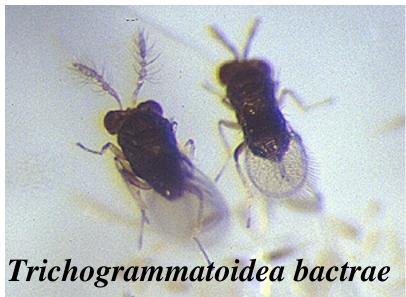


Leafrollers

- •Predominantly the endemic brownheaded leafroller *Ctenopseustis obliquana*.
- •If no sprays are applied up to 30% of fruit can be damaged.
- •Live larvae/eggs on harvested fruit unacceptable


Control of leafrollers in IPM

- •The pest ecology is reasonable well established and the critical time of the season for prevention of damage is known.
- •Selective products are available (Bt, tebufenozide, spinosad).
- A simple scouting system has been developed and tested. Pheromones are known and traps are available.
- •A range of natural enemies are present



Timing of leafroller damage to avocados

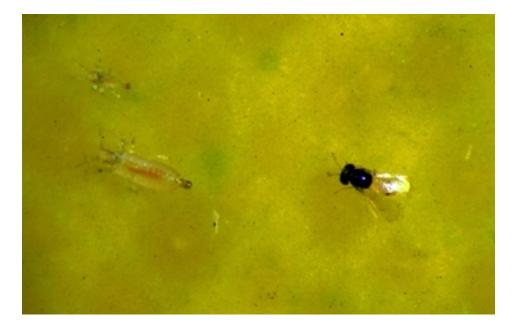
Trigonospila brevifacies

Controlling leafrollers in the future

- Scouting for presence of larvae and natural enemies
- Spray threshold using pest/beneficial data
- Routine use of selective products
- •Enhancement/conservation of biological control agents.

Greenhouse thrips

- •*Heliothrips haemorrhoidalis* is a cosmopolitan species
- •Feeding causes skin blemishs to avocado fruit



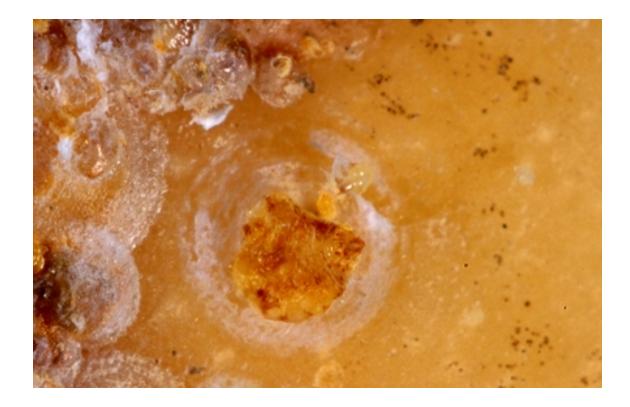
Controlling Greenhouse thrips in IPM

- •The ecology of greenhouse thrips in NZ is less well known than for leafrollers
- Recent research has aimed to determine damage periods and develop the basis for scouting systems and spray thresholds, identify effective pesticides, and introduce a new biological control agent

Thripobius semiluteus

The introduction of a new biocontrol agent

- Prior to 2000 no parasitoids of greenhouse thrips were present in New Zealand
- •Thripobius had already been introduced into California from Australia, and subsequently from California, to Israel and Europe.
- In late 2000 Thripobius was introduced into New Zealand from a colony in Italy.
- In February/March 2001, approximately 75,000 parasitoids were released in Gisborne, the Bay of Plenty, and Northland.


Controlling greenhouse thrips in the future

- •Pest and beneficial scouting
- 'Soft' sprays with minimal impact on biocontrol agents
- Releases of biocontrol agents if needed
- Resistant trees? (reports of some indian root stocks conferring greenhouse thrips resistance to Hass avocados)

Armoured scale

- •Latania scale Hemberlesia lataniae
- •The ecology of scale on avocado in New Zealand is not well known.

Controlling Armoured scale in IPM

- Need to develop a scouting system
- •Need new more selective means of control Oil, IGR's.
- •Enhancement of biological control. Establishment of *Hemisarcoptes coccophagous* in northland and the far north.

Six-spotted mites in avocado

Eotetranychus sexmalulatus Cause massive defoliation of trees

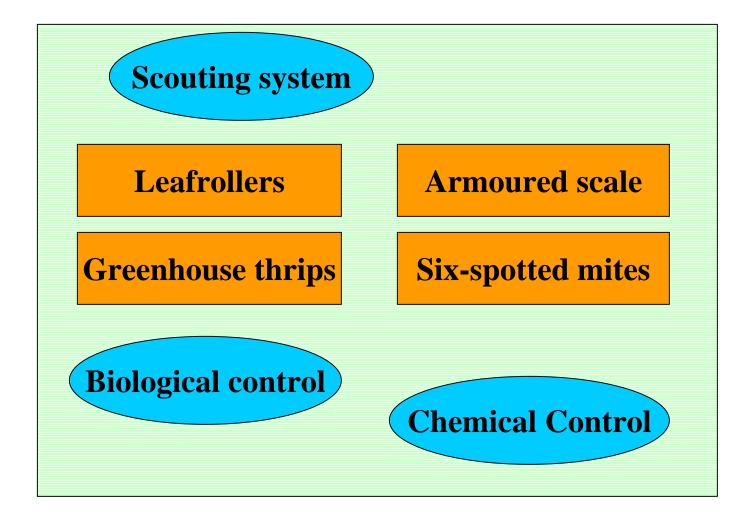
Controlling six-spotted mites in IPM

- Little is known about six-spotted mites
- Need to understand basic ecology, natural enemies, factors causing outbreaks (prevention rather than cure)
- Need efficient scouting systems and action thresholds
- •Need options for control chemical/biological (no pesticides registered from control of mites in avocado)

Are mite outbreaks caused by pesticides?

Numbers of mites per leaf and % leaves infested with

six-spotted mites after 7 months spray programme


divergence (leaves sampled 22 May 2001)

Spray regime	mites/leaf	% infested leaves
1% Oil	3.3	53.8
2% Oil	6.2	49.4
Malathion	3.6	49.3
Averte	20.2	98.0
Unsprayed	1.5	32.5

Control of Six-spotted mite in IPM

- Scouting system and action thresholds
- Good understanding of factors causing outbreaks
- A resistance management programme including a choice of different miticides
- Knowledge of the important natural enemies and compatibility with pesticides
- •Predators commercially available

IPM for NZ avocados

Implementation of IPM in New Zealand

- Implementation of AvoGreen[™] will be a cooperative effort between growers, scouts, grower organisations, researchers, Agchem companies, biocontrol companies.
- However, the avocado growers organisations will lead and manage the process
- •An accreditation system will ensure minimum standards

In the future

- •All growers will have access to professional pest scouts that are committed to the industry
- •A greater range of selective products will be available to enable control of pests without disrupting biological control agents.
- •Key biological control agents will be commercially available, and their compatibility with pesticides will be known.

www.hortresearch.co.nz

Name Philippa Stevens

POSITION Scientist, Insect

Science Group

HortResearch Mt Albert 120 Mt Albert Road Private Bag 92 169 AUCKLAND, NZ

Tel: 09 815 4200 Fax: 09 815 4201 pstevens@hortresearch.co.nz

HortResearch

< CONTACT

