
DEVELOPMENTS IN PLANT GROWTH **REGULATOR USE IN** AVOCADO PRODUCTION

MANIPULATION OF AVOCADO GROWTH, FLOWERING AND FRUITING

Avocado production is a commercial enterprise that is supposed to produce a net income for the grower. Thus, my goal as a researcher is the same as your goal as a grower – to maximize yield and optimize fruit size and quality and increase net grower return.

Because I am a plant physiologist, I try to achieve this goal by learning how to regulate flowering, fruit set and fruit development. The initial research of my lab was to develop strategies using foliar fertilization to increase fruit set, size and quality, because foliar fertilizers are inexpensive and safe to humans and the environment. In cases where we have been unable to meet our goals with foliar fertilizers, we have employed plant growth regulators.

Goal

Develop strategies to increase fruit set, size and quality.

1) Foliar fertilizers

2) Plant growth regulators

PGRs in Citriculture: World Current Uses

Manipulation of flowering

- early bud break
- reduced flowering

BA GA₃

PGR

PGRs in Citriculture: World Current Uses

- reduced early drop
- reduced June drop
- reduced pre-harvest drop

GA₃ GA₃ 2,4-D

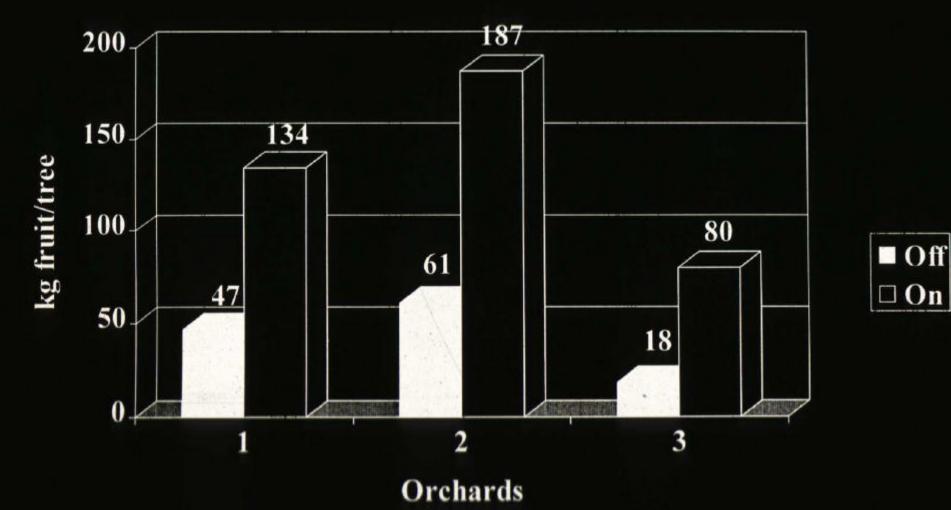
PGRs in Citriculture: World Current Uses	
Manipulation of fruit size	PGR
 stimulate fruit growth 	2,4-D
 fruit thinning 	ethephon, NAA

PGRs in Citriculture: World Current Uses	
Manipulation of fruit size	PGR
 early fruit color 	ethephon
 delay color and rind senescence 	GA ₃
 fruit loosening 	ethephon
late harvest	2,4-D

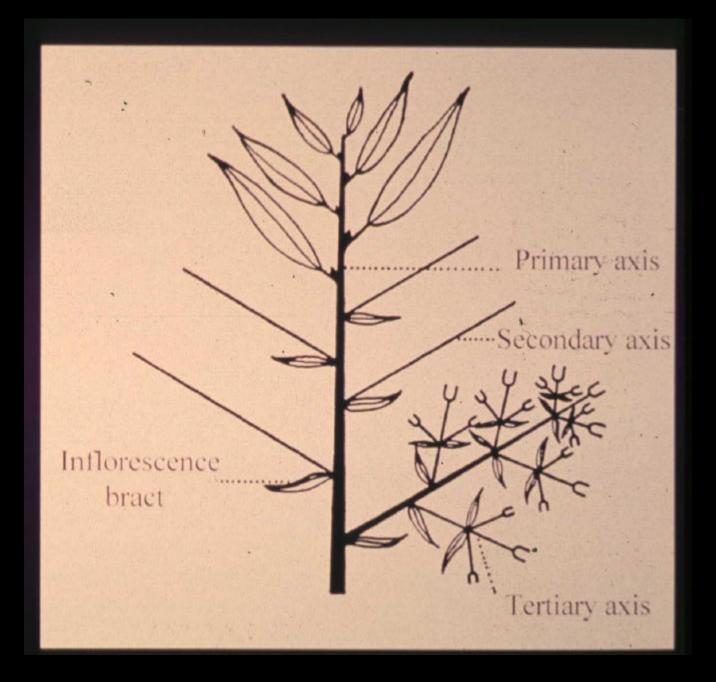
PGRs in Citriculture: World Current Uses

Manipulation of fruit quality	PGR
 reduce albedo breakdown 	GA ₃
 reduced splitting 	2,4-D
 reduced pre-harvest decay 	2,4-D

PGRs in Avocado Production


most powerful tool currently available

use is underdeveloped



Avocado production in California has two problems: (1) low yields and (2) extreme alternate bearing.

ALTERNATE BEARING

The primary, secondary and tertiary axes of an avocado floral shoot.

Stages of inflorescence development, and their approximate calendar dates in California, important to this talk:

S-2 – Just after the transition from vegetative to reproductive growth (1 to 3 secondary axis meristems are present).

S-4 – The 10 secondary axis inflorescence meristems are formed; flowers are not yet formed.

S-5 – Development of flower organs on the oldest (most basal) secondary axis with tertiary axis meristems present.

S-8 – Cauliflower stage of inflorescence development; flower parts are present, final stages of pollen and ovule development are occuring

S-11 – Anthesis

Effects of GA₃ (25 mg/L)

- early bud break of apical buds
- S-2 (late July-early Aug.) spray advanced flowering
- S-4 (Nov.) spray reduced floral intensity

Effects of GA₃ (25 mg/L)

- precocious development of vegetative shoot of indeterminate floral shoots
- S-8 (March) spray increased fruit size and delayed blackening of current crop
- S-8 (March) spray increased yield and fruit size of developing crop

Effect of GA₃ (25 mg/L) on 'Hass' avocado yield (kg/tree).

On year	Off year
18	80
35	42
27	60
34	89
	18 35 27

Effect of GA_3 (25 mg/L) on 'Hass' avocado 2-year cumulative yield.

Treatment	kg/tree	ABI (%)
Control – none	98	57
S-4, November	77	28
S-5, January	87	44
S-8, March	123	41

Effect of prohexadione-Ca (250 mg/L) on shoot growth.

Repeated	Growth (cm) 30 days after application		
treatments	Vegetative	Indeterminate	
Control – none	1.1 ^{NS}	2.4*	
S-8	1.0	2.0	
Control – none	4.6 *	10.7*	
S-11	3.4	9.4	
Control – none	3.8 ^{NS}	12.0**	
Fruit set	3.2	9.9	

Effect of Prohexadione-Ca (250 mg/L) on fruit shape (L/W).

Treatment	Control	P-Ca
S-11, April	1.38	2.08**

Effect of 6-BA (25 mg/L) on % fruit set.

Treatment	Control	6-BA
S-11, April	3	4
Fruit set, May	3	3
June drop, June	9	1*1
1. Fruit size (g)	94	84

Effect of AVG on % fruit set.

- Z502000TreatmentControlmg/LS-11, April32S-11, April31Fruit set, May31June drop, June927
- 1. Reduced final yield of mature crop present at time of application.
- 2. Significantly increased vegetative growth.

Use of PGRs in Avocado Production

• Flowering	GA ₃
 Vegetative Shoot Growth 	Prohexadione-Ca, GA ₃ , AVG
Fruit Set	AVG
Fruit Size	GA ₃
 Fruit Thinning 	6-BA
 Increased Yield 	GA ₃
 Delayed Blackening 	GA ₃
 Alternate Bearing 	GA ₃
 Controlled Ripening 	Ethylene

Research Needs

- Field research
- Basic research
- Tree phenology
- Application methods
- "Green" PGRs

The Future

- Molecular Research
- GMOs Genetically Modified Organisms
- Inducible Promoters

Candidate Genes

Floral Genes: LEAFY, APETALA 1, TERMINAL FLOWER

Sink Strength: SUSY, sucrose synthase

Cytokinin Biosynthesis: Gene for 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR)

Candidate Genes

Abscisic Acid Biosynthesis: *NCED1*, 9-CIS-epoxycarotenoid dioxygenase

Ethylene Synthesis: Gene for 1-aminocyclopropane-1 carboxylic acid (ACC synthase)

Conclusion

We have a lot of work to do!

ACKNOWLEDGMENTS

Samuel Salazar-Garcia samuelsalazar@prodigy.net.mx

Lauren Garner garnerl@prodigy.net

Larry Summers

Grant Klein