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Abstract: Salt stress is a major limiting factor in avocado (Persea americana) cultivation, exacerbated
by global trends towards scarcity of high-quality water for irrigation. Israeli avocado orchards
have been irrigated with relatively high-salinity recycled municipal wastewater for over three
decades, over which time rootstocks were selected for salt-tolerance. This study’s objective was
to evaluate the physiological salt response of avocado as a function of the rootstock. We irrigated
fruit-bearing ‘Hass’ trees grafted on 20 different local and introduced rootstocks with water high
in salts (electrical conductivity of 1.4–1.5 dS/m). The selected rootstocks represent a wide range
of genetic backgrounds, propagation methods, and horticultural characteristics. We investigated
tree physiology and development during two years of salt exposure by measuring Cl and Na leaf
concentrations, leaf osmolality, visible damages, trunk circumference, LAI, CO2 assimilation, stomatal
conductance, spectral reflectance, stem water potential, trichomes density, and yield. We found a
significant effect of the rootstocks on stress indicators, vegetative and reproductive development, leaf
morphogenesis and photosynthesis rates. The most salt-sensitive rootstocks were VC 840, Dusa, and
VC 802, while the least sensitive were VC 159, VC 140, and VC 152. We conclude that the rootstock
strongly influences avocado tree response to salinity exposure in terms of physiology, anatomy,
and development.

Keywords: crop trees; NaCl; remote sensing; salt susceptibility; trichomes

1. Introduction

Commercial modern fruit orchards are typically composed of trees with scions grafted
on to rootstocks of different genetic origins. Grafting is a major element of propagation
processes and rootstock selection is a key component in successful and healthy orchard
establishment [1]. Rootstock selection can be based on adaptability to soil characteristics,
pest and/or disease pressure, and desired root–scion propagation and growth interactions.
Avocado (Persea americana) is a crop of rising importance, with high nutritional and eco-
nomic values [2]. The expansion of avocado cultivation areas might be challenging due
to the crop’s susceptibility to stress brought upon by weather, irrigation water quality,
and soil conditions including temperature, acidity, oxygen availability, and salinity [3–6].
The sensitivity of avocado to such conditions highlights that trees must be conditioned
and adjusted to their specific local environment. The complexity in advancing its pro-
duction increases when considering that avocado consumers generally prefer a specific
variety (‘Hass’) [7]. Rootstocks must therefore be matched to cultivation conditions and
rootstock–scion relationships and subsequent crop performance should be evaluated. Root-
stocks have long been used to help sensitive species cope with biotic and abiotic stresses.
With avocado, most research has focused on diseases such as phytophthora root rot [8],
botryosphaeria branch dieback [9], and verticillium wilt [10]. Abiotic stresses addressed in
rootstock studies include drought [11], calcareous soil [12], and salinity [13].

Salt susceptibility in agricultural crops is defined by a reduction in plant growth,
development, and productivity [14]. Avocado is considered one of the most salt-sensitive
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crops [15]. Its rootstocks are of three primary genetic sources: Mexican, West Indian, and
Guatemalan [16]. Mexican rootstocks were found to be more susceptible to salinity than
others [17,18]. Physiological responses of avocado to salt exposure or wastewater irrigation
were investigated and reviewed during the last 15 years in a number of studies [6,19–21].
The studies focused mostly on scion photosynthesis rates, productivity, and nutritional
status, revealing the negative effect of salinity exposure on these indices. In our opinion,
the influence of rootstocks on avocado response to salinity is particularly engaging, and
we therefore invested in data collection from many rootstocks grafted with the same (Hass)
scion, in order to identify their distinct effects.

Salt stress is known to negatively affect growth and productivity through both osmotic
and toxic mechanisms [22]. The osmotic damage is expressed as changes in water status,
similar to that of drought, measured by reduction in stem water potential (SWP) [23,24].
The potential refers to the energy status of water in a plant, which reflects the balance
between water status in the soil, water taken up from soil by roots, atmospheric water
status and demand, and plant physiological responses, particularly stomatal resistance or
closure [25]. The root’s water uptake is highly influenced by exposure to salts, which may
change root hydraulic characteristics and decrease their function [26,27]. Salt exposure
decreases water potential and consequently inhibits a number of metabolic and physio-
logical functions. To compensate for salinity induced stress, some plants respond through
osmotic adjustment [28]. This mechanism includes an active gradual decrease in cellular
water content, which leads to accumulation of solutes within the cell and water movement
inside it [29]. Osmotic adjustment develops gradually under slow and uniform rates of
dehydration. With this drought-acclimation mechanism, plants maintain high turgor po-
tential under dehydration and avoid inhibition of their functions. Under drought stress,
high solute concentrations may indicate tolerance, but when salt stress causes osmotic
instability, high leaf osmolality might imply the opposite [30,31]. Salinity also reduces
CO2 assimilation, due to stomata closure [32]. The toxic effect of salt exposure includes
chlorophyll degradation due to chloride (Cl) accumulation in the chloroplasts and leaf
necrosis due to an increase in the sodium:potassium (Na:K) ratio [33–35]. These effects may
also decrease the plant’s photosynthetic rates and consequently its reproduction and yield.

The presented work was conducted in a fruit-bearing avocado orchard irrigated with
high salinity water (280–300 mg Cl/L−1, electrical conductivity (EC) 1.4–1.5 dS/m) for
two consecutive years. We used a single scion—‘Hass’—grafted on 20 different rootstocks,
which were previously characterized as relatively tolerant to several stresses [12]. The
divergent sensitivity of the rootstocks to salt stress was evaluated by several plant stress in-
dicators, together with vegetation and reproduction measurements. The extensive rootstock
collection, with 25 repetitions each, provided a unique opportunity to study the response of
mature avocado trees thoroughly and to provide consequent applicable recommendations.

2. Materials and Methods
2.1. Experimental Site and Plant Material

The research was conducted at the Gilat Research Center, Israel (31◦20′08.6′ ′ N
34◦39′57.0′ ′ E). Twenty seedling and vegetatively cloned (VC) rootstocks were grafted
in 2011 with ‘Hass’ scions and planted in 2013. The rootstocks represent a wide range
of genetic backgrounds, propagation methods, and horticultural characteristics (Table 1).
Each rootstock had 25 trees as repetitions, in groups of five trees each in five plots placed
randomly in the orchard (Figure S1). Each plot contained, aside from the five ‘Hass’ trees,
one ‘Ettinger’ tree grafted onto the same rootstock, as a pollenizer. All trees were pruned
uniformly once a year, after harvest. The soil was characterized as sandy loam, with 11.5%
calcium carbonate. In December 2018, prior to the exposure to salinity, soil EC and pH in
saturated paste extract were 0.73 dS/m and 7.79, respectively. Soil Na and Cl concentrations
in the saturated paste extract were 22.27 and 17.62 mg/L, respectively, and soil adsorption
ratio (SAR) was 0.9. The orchard was drip-irrigated and fertigated according to local com-
mercial recommendations with liquid fertilizer (SheferTM+3, Fertilizers & Chemicals Ltd.,
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Kiryat Ata, Israel) twice a week, from March to October. The fertilizer solution contained
7% nitrogen (N), 2% P2O5 and 7% K2O, 300 mg/kg iron (Fe), 150 mg/kg manganese (Mn),
75 mg/kg zinc (Zn), 11 mg/kg copper (Cu), and 8 mg/kg molybdenum (Mo). Annual
irrigation was 14,508 m3/ha, and annual liquid fertilization was 2940 kg/ha.

Table 1. Rootstocks evaluated in the experiment.

Rootstock Origin Propagation Method

Degania 189 WI Seedling
Degania 62 WI Seedling
Dusa Mex × Gu VC
Nachlat 3 WI Seedling
VC 140 WI VC
VC 152 WI VC
VC 159 WI VC
VC 207 Mex ×WI VC
VC 26 WI VC
VC 28 WI VC
VC 320 WI VC
VC 55 WI VC
VC 66 WI VC
VC 68 WI VC
VC 801 WI VC
VC 802 WI VC
VC 804 WI VC
VC 840 Mex VC
VC 96 WI VC
Waldin WI VC

WI—West Indian; Mex—Mexican; Gu—Guatemalan; and VC—vegetatively cloned.

In March 2019, NaCl was added to the fertigation solution to reach 280–300 mg Cl/L,
with EC of 1.4–1.5 dS/m. This level of salinity is considered harmful but not lethal to
avocado [36,37]. A saturated paste extract of the soil in December 2019 had an EC of
1.18 dS/m and pH of 7.32, 70.09 mg/L Cl, 86.82 mg/L Na, and a SAR of 3.81.

During May 2020, extreme weather caused severe burning damage to the edge trees
of the orchard. Hence, the following tests did not include those damaged trees.

Throughout the manuscript, we use the rootstock names when referring to either roots,
trunks, or leaves. However, the leaves and the upper part of the trunks are genetically
identical and belong to the ‘Hass’ scions grafted onto the rootstocks. Using the rootstock
names is for distinguishing purposes.

2.2. Mineral Analysis, Osmolality, and Trichoms

Diagnostic leaves (youngest fully expanded leaves) were sampled from the trees in
November 2019 and 2020. Leaves were dried at 60–70 ◦C for 48 h, ground and minerals
were extracted in water (0.1 g dry matter in 10 mL deionized water). Chloride concen-
tration in the extract was determined using an MKII chloride analyzer 926 (Sherwood)
and Na concentration was determined by an atomic absorption spectrometer (Analyst 200,
PerkinElmer, Waltham, MA, USA) (Figure 1).
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Figure 1. Salt content in leaves of ‘Hass’ avocado trees grafted onto various rootstocks. (A): chlorides. (B): sodium. Differ-
ent letters (upper case for 2019 and lower case for 2020) represent significant (p ≤ 0.05) differences between rootstocks. The 
dashed line represents the avocado leaf Cl upper standard suggested by the University of California, above which is con-
sidered harmful to the trees. SD values are presented in Table S1. 

Diagnostic leaves (three leaves per tree) of all rootstocks were sampled on August 
2020 and frozen immediately in liquid N. Cell sap was extracted by centrifuging the 
thawed samples for 10 min at 12,000 rpm. Sap osmolality (mol kg−1) was measured using 
an osmometer (Vapro-5600, Wescor, South Logan, Utah, USA). Diagnostic leaves of all 
rootstocks were sampled (10 leaves for each rootstock) during August 2020 and observed 
under florescence stereoscope (Nikon SMZ25, Nikon, Tokyo, Japan). Trichomes were 
counted in three fixed areas of 300 µm2 at the abaxial side of each leaf, and the images 
were processed with NIS Elements Br software. 

2.3. Salt Damage Visual Survey 
On April 2020, a survey was taken in the orchard, in which each tree was ranked by 

its visual salt damage symptoms (leaf necrosis and defoliation) from 0–3. A score of 0 
meant “no symptoms”, and scores of 1–3 indicated gradual severity in the symptoms (Fig-
ure 2B–E). The score was given to the general performance of the tree, regarding both the 
young and old leaves. 

Figure 1. Salt content in leaves of ‘Hass’ avocado trees grafted onto various rootstocks. (A): chlorides. (B): sodium. Different
letters (upper case for 2019 and lower case for 2020) represent significant (p ≤ 0.05) differences between rootstocks. The
dashed line represents the avocado leaf Cl upper standard suggested by the University of California, above which is
considered harmful to the trees. SD values are presented in Table S1.

Diagnostic leaves (three leaves per tree) of all rootstocks were sampled on August 2020
and frozen immediately in liquid N. Cell sap was extracted by centrifuging the thawed
samples for 10 min at 12,000 rpm. Sap osmolality (mol kg−1) was measured using an
osmometer (Vapro-5600, Wescor, South Logan, Utah, USA). Diagnostic leaves of all root-
stocks were sampled (10 leaves for each rootstock) during August 2020 and observed under
florescence stereoscope (Nikon SMZ25, Nikon, Tokyo, Japan). Trichomes were counted in
three fixed areas of 300 µm2 at the abaxial side of each leaf, and the images were processed
with NIS Elements Br software.

2.3. Salt Damage Visual Survey

On April 2020, a survey was taken in the orchard, in which each tree was ranked
by its visual salt damage symptoms (leaf necrosis and defoliation) from 0–3. A score of
0 meant “no symptoms”, and scores of 1–3 indicated gradual severity in the symptoms
(Figure 2B–E). The score was given to the general performance of the tree, regarding both
the young and old leaves.
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survey, blue (0) represents no visual salt damage and pink/red shades (1–3) represent salt damage 
in increasing severity, from light necrosis to tree defoliation. 
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ference was measured on December 2018 and then annually after harvest (December) at 
the mark. Leaf area index (LAI) and photosynthetic active radiation (PAR) were measured 
on a bright day at noon, in August 2020, by a portable ceptometer (AccuPAR LP-80). 

In September 2020, 18 months after initiation of the salinity treatment, on a bright 
sunny day, midday CO2 assimilation, transpiration, and stomatal conductance were meas-
ured. These measurements were performed on new mature leaves by a CIRAS-3 portable 
photosynthesis system (PP Systems). 

  

Figure 2. Salt damage in the orchard after a year of irrigation with water high in salt. (A): visual
survey. (B): healthy avocado leaves. (C): leaf necrosis. (D): severe leaf burns. (E): defoliation. In the
survey, blue (0) represents no visual salt damage and pink/red shades (1–3) represent salt damage in
increasing severity, from light necrosis to tree defoliation.

2.4. Vegetation Indices and Photosynthetic Parameters

The trunks of all trees were marked 15 cm above the grafting location. The circumfer-
ence was measured on December 2018 and then annually after harvest (December) at the
mark. Leaf area index (LAI) and photosynthetic active radiation (PAR) were measured on
a bright day at noon, in August 2020, by a portable ceptometer (AccuPAR LP-80).

In September 2020, 18 months after initiation of the salinity treatment, on a bright
sunny day, midday CO2 assimilation, transpiration, and stomatal conductance were mea-
sured. These measurements were performed on new mature leaves by a CIRAS-3 portable
photosynthesis system (PP Systems).
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2.5. Remotely Sensed Vegetation Indices

A drone flight was conducted with a DJI Matrice 600 pro (DJI, Shenzhen, China)
equipped with a MicaSense RedEdge-MX multispectral camera (MicaSense, Seattle, WA,
USA) facing nadir. The Rededge-MX has five sensors (blue: 465–485 nm, green: 550–570 nm,
red: 663–673 nm, red edge: 712–722 nm, and near infrared: 820–860 nm). The drone was
flown at 12:00 noon to reduce the shadows of trees in the canopy. Flight path was planned
and executed as a grid mission with the PIX4D capture 4.10.0(11) application (Pix4D
SA; Lausanne, Switzerland) installed on an Apple IPAD. The altitude of the flight was
30 m above ground level, with a front and side overlap of 80%, and the corresponding
ground sampling distance (GSD) was 2.08 cm/px. Calibration images of the MicaSense
calibrated reflectance panel were acquired before and after the flight to ensure image
quality. In addition, 6 ground control points (GCP) were placed on the edges and 1 GCP
placed inside the orchard. The coordinates of the GCP were measured using real-time
kinematic GPS (Spectra Precision SP60 receiver, Trimble) to increase the accuracy of the
image photogrammetric processing. The photogrammetric processing was carried out
using the Agisoft Metashape professional 1.6.5 software package to produce an orthophoto
and a digital surface model (DSM). Image analysis was performed using ArcGIS 10.8,1
software (ESRI, Ltd., Novi Beograd, Serbia). Plant pixels were identified and extracted by a
manual thresholds setting, based on DSM, which represents the height of the canopy, and
the green and NIR bands often used to differentiate between soil and vegetation pixels.
Following initial extraction of vegetation pixels, the normalized difference red edge (NDRE)
vegetation spectral index (Potgieter et al. 2017) was calculated using:

Equation (1):

NDRE = (NIR − red edge)/(NIR + red edge) (1)

NDRE is similar to the common NDVI (normalized difference vegetation index),
yet instead of using the red band, it uses the red-edge band. NDRE is considered a
better marker of plant conditions when dealing with mature trees, as red-edge light can
pass through the leaves far deeper than the red light. Moreover, NDVI often becomes
inaccurate (saturated) after plants accumulate their maximum amount of chlorophyll
content (Becker et al. 2020).

Avocado leaf pixels were further identified and extracted by a manual threshold
setting of NDRE > 0.3. Using a GIS layer of 1.2 m circle polygons for each tree, a mean
NDRE value in each polygon was calculated using the tool Zonal Statistics from the Spatial
Analyst Toolbox in ArcGIS.

2.6. Productivity

Fruits were harvested and weighed separately per tree during the 2019 and 2020
seasons. To calculate the fruit number per tree, a random ten-fruit sample from each tree
was weighed.

2.7. Stem Water Potential (SWP)

Mature leaves were enclosed in aluminum foil lined sealable bags for two hours before
measurement. SWP was measured in a Scholander-type pressure chamber (MRC, Israel)
according to [38]. In two rootstocks (VC840 and VC152), SWP was measured a day before
the initiation of salinity treatment (March 2019), and four more times at 2-week intervals.

2.8. Susceptibility Rating

On each index that was tested in this work (Cl and Na leaf concentrations, osmolality,
visual damage, trunk circumference, LAI, CO2 assimilation, stomatal conductance, NDRE,
trichomes density, and yield), the rootstocks were ranked from 1 to 20, according to their
relative salt sensitivity (20—the most susceptible rootstock, 1—the most tolerant one). The
average indices’ score of each rootstock was calculated to obtain the final rating.
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2.9. Statistical Analysis

JMP®14.0.0 software (SAS Institute Inc., Cary, North Carolina, USA) was used to carry
out ANOVA and correlation analysis. The Tukey–Kramer test was used to estimate the
differences between the rootstocks at p ≤ 0.05.

3. Results

Leaf concentrations of Cl and Na were compared with the toxic thresholds for avocado
suggested by the University of California (http://ucavo.ucr.edu/General/LeafAnalysis,
accessed on 10 August 2021). Cl leaf concentration measured in most rootstocks was higher
than the upper threshold of 0.25% (Figure 1A). However, in some rootstocks, this was the
case only in 2020. The highest Cl levels in 2020 were found in Dusa and VC 840 (0.76% and
0.72%, respectively), while the lowest Cl concentration was measured in VC 152 leaves
(0.21%). Na leaf concentration was not affected significantly by the rootstocks in 2019
(Figure 1B). However, in 2020 the highest level of leaf Na was found in VC 840 and the
lowest in VC 159. No rootstock reached the upper threshold of 0.25%.

After a year of irrigation with water high in salt, salinity damage was observed in
some specific rootstocks in the orchard, including leaf necrosis and defoliation (Figure 2).
The rootstocks that showed the highest visual salt damage were VC 840, Dusa, VC 207, and
VC 802.

The highest leaf osmolality (Figure 3) was measured in VC 840’s leaves: 728 mol kg−1.
The lowest osmolality was found in VC 152’s leaves: 583 mol kg−1.
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salinity exposure. Different letters represent significant (p ≤ 0.05) differences between rootstocks. SD
values are presented in Table S1.

The average biannual increase in trunk circumference for all rootstocks was nearly
17% (Figure 4A). VC 152 grew the most, with an increase of 26%, while VC 840’s increase
was the lowest—only 11%—and Dusa increased 14%. The highest LAI was found in VC
320, Degania 62, and VC 804 (Figure 4B). The lowest LAI was measured in VC 840 and
Nachlat 3.

Photosynthesis rates were affected by the rootstock (Figure 5). The highest stomatal
conductance (gs) was measured in leaves of VC 152 (Figure 5A). The lowest gs values were
measured in Nachlat 3, VC 802, and VC 96 were nearly half the value of highest. Similar
results were found regarding CO2 assimilation (Figure 5B).

http://ucavo.ucr.edu/General/LeafAnalysis
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In the NDRE mosaic (Figure 6A), red represents bare soil, yellow to pale green indicates
stressed plants, and dark green to blue shows vigorous canopy (Figure 6A) (see https:
//micasense.com/what-is-ndre, accessed on 10 August 2021). We found the highest NDRE
values in rootstocks VC 802, Degania 62, and VC 159, and the lowest in VC 840 and Dusa
(Figure 6B).
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Trichome density was significantly different between ‘Hass’ leaves that were grafted
on different rootstocks (Figure 7). The highest quantity of trichomes per 300 µm2 was
measured in VC 840 leaves (15.5) and the lowest in VC 804 (5.25).

Plants 2021, 10, x FOR PEER REVIEW 11 of 18 
 

 

Trichome density was significantly different between ‘Hass’ leaves that were grafted 
on different rootstocks (Figure 7). The highest quantity of trichomes per 300 µm2 was 
measured in VC 840 leaves (15.5) and the lowest in VC 804 (5.25). 

 
Figure 7. Trichome density on the abaxial side of ‘Hass’ avocado leaves. (A): the effect of rootstocks on trichome density 
after 18 months of salinity exposure. (B): live avocado leaves of VC 152 and VC 840 under a stereoscope. Different letters 
represent significant (p ≤ 0.05) differences between rootstocks. SD values are presented in Table S1. 

As avocado trees exhibit alternate bearing cycles, we chose to present the average 
biannual yield of 2019–2020 (under salinity conditions). We found significant differences 
between the yields of the rootstocks (Figure 8). The highest yields were those of VC 68 
and Degania 62, and the lowest were recorded in VC 26, VC 802, VC 801, and Waldin. 

Figure 7. Trichome density on the abaxial side of ‘Hass’ avocado leaves. (A): the effect of rootstocks on trichome density
after 18 months of salinity exposure. (B): live avocado leaves of VC 152 and VC 840 under a stereoscope. Different letters
represent significant (p ≤ 0.05) differences between rootstocks. SD values are presented in Table S1.

As avocado trees exhibit alternate bearing cycles, we chose to present the average
biannual yield of 2019–2020 (under salinity conditions). We found significant differences
between the yields of the rootstocks (Figure 8). The highest yields were those of VC 68 and
Degania 62, and the lowest were recorded in VC 26, VC 802, VC 801, and Waldin.
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Correlation analyses between the different indices of all rootstocks revealed a signif-
icant affinity between the canopy volume and LAI, PAR, yield and the relative change
in trunk circumference (Table 2). The photosynthesis indices (gs, A, and E) were highly
correlated with each other. The transpiration was also correlated with LAI and PAR. Cl leaf
concentration was significantly correlated with LAI, leaf osmolality, trichomes number and
the change in trunk circumference.

Table 2. Correlation probability between the developmental and physiological indices that were tested among the rootstocks.
gs: stomatal conductance. A: CO2 assimilation. E: transpiration. LAI: leaf area index. PAR: photosynthetic active radiation.
Osmol: leaf osmolality. FPT: fruit per tree. Trich: trichomes. TC: trunk circumference. Bold font represents significant
(p ≤ 0.05) correlation between indices.

Canopy
Vol. gs A E LAI PAR Osmol. Yield 19–20

(FPT) Trich Cl (%)

gs 0.7717
A 0.2217 <0.0001
E 0.1758 <0.0001 <0.0001

LAI <0.0001 0.0522 0.2099 0.0043
PAR <0.0001 0.9557 0.8939 0.0452 <0.0001

Osmolality 0.3125 0.7451 0.8919 0.5665 0.8503 0.3706
Yield 19–20 (FPT) 0.0163 0.2960 0.4726 0.5119 0.0012 0.7984 0.8084

Trichomes 0.7245 0.2420 0.9788 0.0693 0.3993 0.0338 0.2112 0.7814
Cl (%) 0.9285 0.4523 0.4686 0.7877 0.0108 0.3409 0.0131 0.0657 0.0002

Change in TC (%) 0.0050 0.3234 0.0649 0.2748 0.3633 0.6928 0.0048 0.3140 0.8209 0.0304

The two rootstocks that exhibited the highest and lowest leaf Cl—VC 840 and VC 152,
respectively—were chosen for an in-depth investigation of their response to salt in terms of
water stress. These rootstocks had a significant difference in leaf Cl and SWP even before
salinity exposure, but the response to stress, as expressed in SWP, was faster and stronger
in VC 840, compared with VC 152 (Figure 9).
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For each salt-related index tested in this work, rootstocks were scored progressively
from 1 to 20, according to their measured performance; 1—the least salt sensitive rootstock,
and 20—the most sensitive. We calculated the overall score of the rootstocks (Table 3) and
the results demonstrate the divergent susceptibility of avocado rootstocks to salt. The most
susceptible rootstocks were VC840, Dusa, and VC802. The least susceptible were VC159,
VC140, and VC152.

Table 3. Salt susceptibility rating of avocado rootstocks under EC 1.4–1.5 dS/m.

Rootstock Final Score

VC 840 16.8
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Dusa 15.2
VC 802 14.8
Degania 189 12.8
VC 801 12.7
VC 207 12.6
Waldin 12.5
Nachlat 3 12.2
VC 26 11.1
VC 55 11.1
VC 66 10.1
VC 96 9.4
VC 28 9.4
Degania 62 9.3
VC 68 8.5
VC 320 7.1
VC 804 6.4
VC 152 6.0
VC 140 5.8
VC 159 4.8

4. Discussion and Conclusions

The fact that leaf Cl concentrations are influenced by rootstocks has been reported for
many crops, among them grapevine [39], pomegranate [40], citrus [41], and avocado [18].
This phenomenon is likely to stem from divergent levels of root Cl absorption and exclusion,
as well as transport mechanisms [42–44]. In our experiment, the rootstocks that exhibited
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the highest leaf Cl concentration (VC 840 and Dusa, Figure 1) were both of a Mexican
genetic background, which is characterized by this trait [17,45,46]. The combination of
‘Hass’ scion with a Mexican rootstock was found to be extremely salt-sensitive, with
significant damages when the EC is higher than 0.6 dS/m [47].

Dusa, the second most susceptible rootstock in our orchard, was reported as a top-
producer under salinity conditions similar to ours (EC = 1.5 dS/m) in a previous study,
which compared 13 avocado rootstocks in California [48]. However, this result changed
after the first year of their experiment. Considering the fact that most of the trees in [48]
did not survive the experiment, we suggest that the rootstocks that were included in
the experiment were relatively salt-sensitive, while our rootstock collection comprised
a wide range of responses to salinity, including various levels of tolerance, as reported
in [12,16,49,50]. However, in our study, Dusa leaves accumulated more Cl ions in the
second year of the experiment, compared with the first one (Figure 1), which suggests a
gradual response to salt exposure, similarly to [48].

Visual salt damage was most severe in the rootstocks with a Mexican background
(VC 840, Dusa, and VC 207), but also in a West Indian rootstock—VC 802 (Figure 2). Leaf
necrosis and defoliation are known manifestations of the toxic effect of Cl, as was reported,
among others, for citrus [51], and poplar [52]. A common indication of ion accumulation
in the leaves is the osmolality [53], which was also highest in VC 840 (Figure 3). Leaf
osmolality increased under NaCl stress in grapevine [54] and almonds [55], where Cl ions
were found to account for most of it.

In accordance with the known limitations of vegetative growth due to salinity [56],
we observed relative differences in LAI and trunk circumference between the rootstocks
in the orchard. VC 840 was the most effected rootstock for both variables (Figure 4). VC
152, which was ranked highest in trunk growth, accumulated the least amount of Cl in
the leaves and exhibited the lowest leaf osmolality. These results strengthen the effect of
stress on plant vigor, and the rootstock’s major influence over both salt-susceptibility and
vegetative growth.

Salt stress may limit the photosynthetic capacity of crop plants and harm their growth
and development [57]. High leaf concentrations of Na are known to reduce stomatal
conductance [58]. High leaf concentrations of Cl are known to damage photosynthesis
via chlorophyll degradation [59]. Chlorophyll degradation and low stomatal conductance
reduce CO2 assimilation [60]. This is in line with our results, where VC 152, which had
the lowest salt leaf concentrations, showed the highest photosynthesis rates (Figure 5).
A recent research focused on the most salt-tolerant rootstocks from [48]—R0.05, Dusa,
and PP40—and investigated their development, photosynthesis rates, and physiological
traits [61]. Similar to our results, they found that salinity decreased photosynthesis and
impaired plant performance.

Spectral reflectance was previously used to measure salinity damage in sunflowers [62]
and several landscape species [63]. In avocado orchards, spectral tools were found to be
accurate in evaluating the vegetative status [64]. NDRE was chosen for our experiment due
to its high sensitivity compared with NDVI [65]. NDRE values supported our other findings
of VC 840 and Dusa as the most salt-susceptible rootstocks in the orchard (Figure 6).

The highest trichome density was found in the leaves of VC 840 (Figure 7) and the
lowest in VC 804, which exhibited high LAI (Figure 4) and the lowest leaf Cl in 2019
(Figure 1). It is noteworthy that LAI and trichome density were negatively associated in
other rootstocks as well, although we did not find a significant correlation between these
indices (Table 2). This finding is novel for avocado. As trichome density was found to
increase under salinity in several other plants [66–68], we suggest our original finding as
an additional indicator for salt susceptibility in avocado rootstocks. The physiological or
developmental mechanism that correlates trichomes with salinity exposure is a subject for
additional research.

Salt stress is known to negatively affect plant productivity [57]. Reproductive de-
velopment can be quantified in several phenological stages—flowering, fruit set, fruit
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growth, and the resulted yield. In this work, we chose the final number of fruit per tree
(FTP) as the objective, but did not find strong associations between the stress indications
and the yields (Table 2). The highest FTP was found for VC 68 and Degania 62, and the
lowest were recorded for VC 26, VC 802, VC 801, and Waldin (Figure 8). However, VC 802
had a relatively high leaf Cl concentration and low photosynthesis rates, and Degania 62
exhibited high LAI and low trichome density. We assume that in an alternate-bearing tree
like avocado, the salinity effect over the yield will be strengthened as the salt treatment
continues for years.

After considering all the results, we focused on two rootstocks with opposing response
to salt—VC 840 (most susceptible) and VC 152 (least susceptible). Measurements of SWP
revealed a significant difference between these rootstocks (Figure 9): VC 840’s SWP was
more negative even before the initiation of salt treatment, and the trees exhibited stress
indication weeks before the VC 152 trees did. VC 840 stress reaction was more intensive
than that of VC 152, as the relative change in SWP due to saline irrigation was stronger
in VC 840 (Figure 9). This result, which suggests that differences in salt sensitivity can be
predicted even before salinity exposure, requires further validation and extension.

To conclude, salinity is one of the most limiting factors in avocado cultivation, and
finding a tolerant rootstock is a challenge for the global avocado industry. There are
hundreds of known avocado rootstocks from which commercial nurseries choose their
grafting material. Our work was based on ongoing Israeli research programs, representing
a wide range of rootstocks with divergent characteristics and relatively high tolerance to
biotic and abiotic stresses. The presented work contributes to the global avocado database
by comparing the physiological response of 20 commercial rootstocks to salt exposure. In
addition to our specific results, we believe that the methodologies that were used in the
study can provide an applicative and desirable tool for avocado growers and researchers
in areas concerned with soil salinity, particularly when induced through low-quality
irrigation water.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10081672/s1, Figure S1: The orchard map, Table S1: SD values for figures 1, 3, 4, 5, 6, 7,
and 8.

Author Contributions: Conceptualization, S.L. and A.D.; methodology, S.L., Y.C., U.Y., and A.D; data
curation, S.L. and E.G.; analysis and visualization, S.L.; writing-original draft, S.L.; writing—review
and editing, Y.C., E.G., U.Y., A.B.-G., and A.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

Acknowledgments: We thank Yulia Subbotin, Talal Hawashla, Yonatan Ron, Inna Faingold, Guy
Liddor, and Ohaliav Keisar for technical support in the field and laboratory.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Whiting, M. Precision orchard systems. In Automation in Tree Fruit Production: Principles and Practice; CABI: Wallingford, UK, 2018;

pp. 75–93.
2. Rincon-Patino, J.; Lasso, E.; Corrales, J.C. Estimating avocado sales using machine learning algorithms and weather data.

Sustainability 2018, 10, 3498. [CrossRef]
3. Chartzoulakis, K.; Patakas, A.; Kofidis, G.; Bosabalidis, A.; Nastou, A. Water stress affects leaf anatomy, gas exchange, water

relations and growth of two avocado cultivars. Sci. Hortic. 2002, 95, 39–50. [CrossRef]
4. Carr, M. The water relations and irrigation requirements of avocado (Persea americana Mill.): A review. Exp. Agric. 2013, 49,

256–278. [CrossRef]
5. Vishwakarma, K.; Upadhyay, N.; Kumar, N.; Yadav, G.; Singh, J.; Mishra, R.K.; Kumar, V.; Verma, R.; Upadhyay, R.G.; Pandey, M.;

et al. Abscisic acid signaling and abiotic stress tolerance in plants: A review on current knowledge and future prospects. Front.
Plant Sci. 2017, 8, 161. [CrossRef]

https://www.mdpi.com/article/10.3390/plants10081672/s1
https://www.mdpi.com/article/10.3390/plants10081672/s1
http://doi.org/10.3390/su10103498
http://doi.org/10.1016/S0304-4238(02)00016-X
http://doi.org/10.1017/S0014479712001317
http://doi.org/10.3389/fpls.2017.00161


Plants 2021, 10, 1672 15 of 17

6. Nemera, D.B.; Bar-Tal, A.; Levy, G.J.; Lukyanov, V.; Tarchitzky, J.; Paudel, I.; Cohen, S. Mitigating negative effects of long-term
treated wastewater application via soil and irrigation manipulations: Sap flow and water relations of avocado trees (Persea
americana Mill.). Agric. Water Manag. 2020, 237, 106178. [CrossRef]

7. Vargas-Canales, J.M.; Carbajal-Flores, G.; Bustamante-Lara, T.I.; Camacho-Vera, J.H.; Fresnedo-Ramírez, J.; Palacios-Rangel, M.I.;
Rodríguez-Haros, B. Impact of the Market on the Specialization and Competitiveness of Avocado Production in Mexico. Int. J.
Fruit Sci. 2020, 20, S1942–S1958. [CrossRef]

8. Smith, L.; Dann, E.; Pegg, K.; Whiley, A.; Giblin, F.; Doogan, V.; Kopittke, R. Field assessment of avocado rootstock selections for
resistance to Phytophthora root rot. Australas. Plant Pathol. 2011, 40, 39–47. [CrossRef]

9. Auger, J.; Palma, F.; Pérez, I.; Esterio, M. First report of Neofusicoccum australe (Botryosphaeria australis), as a branch dieback
pathogen of avocado trees in Chile. Plant Dis. 2013, 97, 842. [CrossRef]

10. Haberman, A.; Lazare, S.; Hazanovsky, M.; Lebiush, S.; Zipori, I.; Busatn, A.; Simenski, E.; Dag, A. Management of Verticillium
Wilt of Avocado Using Tolerant Rootstocks. Plants 2020, 9, 531. [CrossRef] [PubMed]

11. Martínez-Ferri, E.; Moreno-Ortega, G.; van den Berg, N.; Pliego, C. Mild water stress-induced priming enhance tolerance to
Rosellinia necatrix in susceptible avocado rootstocks. BMC Plant Biol. 2019, 19, 458. [CrossRef]

12. Ben-Ya’acov, A.; Michelson, E.; Zilberstaine, M.; Barkan, Z.; Sela, I. Selection of clonal avocado rootstocks in Israel for high produc-
tivity under different soil conditions. In Proceedings of the 2nd World Avocado Congress, Orange, CA, USA, 21–26 April 1991.

13. Castro, V.; Iturrieta, E.; Fassio, O. Rootstock effect on the tolerance of avocado plants cv. Hass to NaCl stress. Chil. J. Agric. Res.
2009, 69, 316–324. [CrossRef]

14. Läuchli, A.; Grattan, S. Plant growth and development under salinity stress. In Advances in Molecular Breeding toward Drought and
Salt Tolerant Crops; Springer: Dordrecht, The Netherlands, 2007; pp. 1–32.

15. Bernstein, N.; Meiri, A.; Zilberstaine, M. Root growth of avocado is more sensitive to salinity than shoot growth. J. Am. Soc.
Hortic. Sci. 2004, 129, 188–192. [CrossRef]

16. Ben-Ya’acov, A.; Michelson, E. Avocado rootstocks. Hortic. Rev. 1995, 17, 381–429.
17. Lazare, S.; Haberman, A.; Yermiyahu, U.; Erel, R.; Simenski, E.; Dag, A. Avocado rootstock influences scion leaf mineral content.

Arch. Agron. Soil Sci. 2020, 66, 1399–1409. [CrossRef]
18. Mickelbart, M.V.; Arpaia, M.L. Rootstock Influences Changes in Ion Concentrations, Growth, and Photosynthesis of ‘Hass’

Avocado Trees in Response to Salinity. J. Am. Soc. Hortic. Sci. 2002, 127, 649–655. [CrossRef]
19. Musyimi, D.; Netondo, G.; Ouma, G. Effects of salinity on growth and photosynthesis of avocado seedlings. Int. J. Bot. 2007, 3,

78–84. [CrossRef]
20. Alvarez-Acosta, C.; Marrero-Dominguez, A.; Gallo-Llobet, L.; Gonzalez-Rodriguez, A.M. Physiological response of selected

avocados (Persea americana) subjected to NaCl and NaHCO3 stress. Sci. Hortic. 2018, 237, 81–88. [CrossRef]
21. Mickelbart, M.V.; Melser, S.; Lu Arpaia, M. Salinity-induced changes in ion concentrations of ‘Hass’ avocado trees on three

rootstocks. J. Plant Nutr. 2007, 30, 105–122. [CrossRef]
22. Liang, W.; Ma, X.; Wan, P.; Liu, L. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 2018, 495, 286–291.

[CrossRef]
23. Arif, Y.; Singh, P.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salinity induced physiological and biochemical changes in plants: An omic

approach towards salt stress tolerance. Plant Physiol. Biochem. 2020, 156, 64–77. [CrossRef]
24. Corell, M.; Martín-Palomo, M.; Girón, I.; Andreu, L.; Galindo, A.; Centeno, A.; Pérez-López, D.; Moriana, A. Stem water

potential-based regulated deficit irrigation scheduling for olive table trees. Agric. Water Manag. 2020, 242, 106418. [CrossRef]
25. Aston, M.; Lawlor, D.W. The relationship between transpiration, root water uptake, and leaf water potential. J. Exp. Bot. 1979, 30,

169–181. [CrossRef]
26. Álvarez, S.; Sánchez-Blanco, M. Long-term effect of salinity on plant quality, water relations, photosynthetic parameters and ion

distribution in Callistemon citrinus. Plant Biol. 2014, 16, 757–764. [CrossRef]
27. Shalhevet, J.; Maas, E.; Hoffman, G.; Ogata, G. Salinity and the hydraulic conductance of roots. Physiol. Plant. 1976, 38, 224–232.

[CrossRef]
28. Munns, R.; Passioura, J.B.; Colmer, T.D.; Byrt, C.S. Osmotic adjustment and energy limitations to plant growth in saline soil. New

Phytol. 2020, 225, 1091–1096. [CrossRef] [PubMed]
29. Blum, A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 2017,

40, 4–10. [CrossRef] [PubMed]
30. Caparrotta, S.; Boni, S.; Taiti, C.; Palm, E.; Mancuso, S.; Pandolfi, C. Induction of priming by salt stress in neighboring plants.

Environ. Exp. Bot. 2018, 147, 261–270. [CrossRef]
31. Çiçek, N.; Çakirlar, H. The effect of salinity on some physiological parameters in two maize cultivars. Bulg. J. Plant Physiol. 2002,

28, 66–74.
32. Zhou, S.; Duursma, R.A.; Medlyn, B.E.; Kelly, J.W.; Prentice, I.C. How should we model plant responses to drought? An analysis

of stomatal and non-stomatal responses to water stress. Agric. For. Meteorol. 2013, 182, 204–214. [CrossRef]
33. Slabu, C.; Zörb, C.; Steffens, D.; Schubert, S. Is salt stress of faba bean (Vicia faba) caused by Na+ or Cl–toxicity? J. Plant Nutr. Soil

Sci. 2009, 172, 644–651. [CrossRef]

http://doi.org/10.1016/j.agwat.2020.106178
http://doi.org/10.1080/15538362.2020.1837711
http://doi.org/10.1007/s13313-010-0011-0
http://doi.org/10.1094/PDIS-10-12-0980-PDN
http://doi.org/10.3390/plants9040531
http://www.ncbi.nlm.nih.gov/pubmed/32325981
http://doi.org/10.1186/s12870-019-2016-3
http://doi.org/10.4067/S0718-58392009000300003
http://doi.org/10.21273/JASHS.129.2.0188
http://doi.org/10.1080/03650340.2019.1672163
http://doi.org/10.21273/JASHS.127.4.649
http://doi.org/10.3923/ijb.2007.78.84
http://doi.org/10.1016/j.scienta.2018.04.010
http://doi.org/10.1080/01904160601055137
http://doi.org/10.1016/j.bbrc.2017.11.043
http://doi.org/10.1016/j.plaphy.2020.08.042
http://doi.org/10.1016/j.agwat.2020.106418
http://doi.org/10.1093/jxb/30.1.169
http://doi.org/10.1111/plb.12106
http://doi.org/10.1111/j.1399-3054.1976.tb03995.x
http://doi.org/10.1111/nph.15862
http://www.ncbi.nlm.nih.gov/pubmed/31006123
http://doi.org/10.1111/pce.12800
http://www.ncbi.nlm.nih.gov/pubmed/27417527
http://doi.org/10.1016/j.envexpbot.2017.12.017
http://doi.org/10.1016/j.agrformet.2013.05.009
http://doi.org/10.1002/jpln.200900052


Plants 2021, 10, 1672 16 of 17

34. Shelke, D.; Nikalje, G.; Nikam, T.; Maheshwari, P.; Punita, D.; Rao, K.; Kavi Kishor, P.; Suprasanna, P. Chloride (Cl−) Uptake,
Transport, and Regulation in Plant Salt Tolerance. In Molecular Plant Abiotic Stress: Biology and Biotechnology; Wiley: Hoboken, NJ,
USA, 2019; pp. 241–268.

35. Patterson, J.H.; Newbigin, E.; Tester, M.; Bacic, A.; Roessner, U. Metabolic responses to salt stress of barley (Hordeum vulgare L.)
cultivars, Sahara and Clipper, which differ in salinity tolerance. J. Exp. Bot. 2009, 60, 4089–4103.

36. Fipps, G. Irrigation water quality standards and salinity management strategies. In Texas Farmer Collection; Texas AgriLife
Extension publication, Texas A&M Univ.: College Station, TX, USA, 2003.

37. Crowley, D. Salinity management in avocado orchards. Calif. Avocado Soc. Yearb. 2008, 91, 83–104.
38. Shackel, K.A. Plant water status as an index of irrigation needs in deciduous fruit trees. HortScience 1995, 30, 905B–905. [CrossRef]
39. Dag, A.; Ben-Gal, A.; Goldberger, S.; Yermiyahu, U.; Zipori, I.; Or, E.; David, I.; Netzer, Y.; Kerem, Z. Sodium and chloride

distribution in grapevines as a function of rootstock and irrigation water salinity. Am. J. Enol. Vitic. 2015, 66, 80–84. [CrossRef]
40. Karimi, H.; Hassanpour, N. Effects of salinity, rootstock, and position of sampling on macro nutrient concentration of pomegranate

cv. Gabri. J. Plant Nutr. 2017, 40, 2269–2278. [CrossRef]
41. Moya, J.L.; Gómez-Cadenas, A.; Primo-Millo, E.; Talon, M. Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant

Cleopatra mandarin citrus rootstocks is linked to water use. J. Exp. Bot. 2003, 54, 825–833. [CrossRef]
42. Simón-Grao, S.; Nieves, M.; Martínez-Nicolás, J.J.; Cámara-Zapata, J.M.; Alfosea-Simón, M.; García-Sánchez, F. Response of three

citrus genotypes used as rootstocks grown under boron excess conditions. Ecotoxicol. Environ. Saf. 2018, 159, 10–19. [CrossRef]
[PubMed]

43. Dbara, S.; Melaouhi, A.; Mars, M.; Ben Mimoun, M. Potassium uptake efficiency of two pear cultivars and leaf concentration at
deficiency symptoms appears. J. Plant Nutr. 2019, 42, 1660–1667. [CrossRef]

44. Paudel, I.; Bar-Tal, A.; Raveh, E.; Bernstein, N.; Cohen, S. Tolerance of citrus rootstocks to poor water quality is improved by root
zone aeration via selective uptake of ions, higher photosynthesis and carbon storage. Sci. Hortic. 2019, 251, 9–19. [CrossRef]

45. Kadman, A.; Ben-Ya’acov, A. Selection of avocado rootstocks for saline conditions. Acta Hort. 1976, 57, 189. [CrossRef]
46. Embleton, T.; Matsumura, M.; Storey, W.; Garber, M. Chlorine and other elements in avocado leaves as influenced by rootstock.

Proc. Am. Soc. Hortic. Sci. 1962, 80, 231–236.
47. Oster, J.D.; Stottlmyer, D.; Arpaia, M. Salinity and water effects on ‘Hass’ avocado yields. J. Am. Soc. Hortic. Sci. 2007, 132,

253–261. [CrossRef]
48. Celis, N.; Suarez, D.L.; Wu, L.; Li, R.; Arpaia, M.L.; Mauk, P. Salt Tolerance and Growth of 13 Avocado Rootstocks Related Best to

Chloride Uptake. HortScience 2018, 53, 1737–1745. [CrossRef]
49. Ben-Ya’acov, A. Avocado rootstocks in use in Israel. Calif. Avocado Soc. Yearb. 1976, 59, 66–68.
50. Bernstein, N.; Ioffe, M.; Zilberstaine, M. Salt-stress effects on avocado rootstock growth. I. Establishing criteria for determination

of shoot growth sensitivity to the stress. Plant Soil 2001, 233, 1–11. [CrossRef]
51. Hussain, S.; Luro, F.; Costantino, G.; Ollitrault, P.; Morillon, R. Physiological analysis of salt stress behaviour of citrus species and

genera: Low chloride accumulation as an indicator of salt tolerance. S. Afr. J. Bot. 2012, 81, 103–112. [CrossRef]
52. Abbruzzese, G.; Beritognolo, I.; Muleo, R.; Piazzai, M.; Sabatti, M.; Mugnozza, G.S.; Kuzminsky, E. Leaf morphological plasticity

and stomatal conductance in three Populus alba L. genotypes subjected to salt stress. Environ. Exp. Bot. 2009, 66, 381–388.
[CrossRef]

53. Tarakcioglu, C.; Inal, A. Changes induced by salinity, demarcating specific ion ratio (Na/Cl) and osmolality in ion and proline
accumulation, nitrate reductase activity, and growth performance of lettuce. J. Plant Nutr. 2002, 25, 27–41. [CrossRef]

54. Meggio, F.; Prinsi, B.; Negri, A.; Simone Di Lorenzo, G.; Lucchini, G.; Pitacco, A.; Failla, O.; Scienza, A.; Cocucci, M.; Espen, L.
Biochemical and physiological responses of two grapevine rootstock genotypes to drought and salt treatments. Aust. J. Grape
Wine Res. 2014, 20, 310–323. [CrossRef]

55. Zrig, A.; Mohamed, H.; Tounekti, T.; Ennajeh, M.; Valero, D.; Khemira, H. A comparative study of salt tolerance of three almond
rootstocks: Contribution of organic and inorganic solutes to osmotic adjustment. J. Agric. Sci. Technol. 2015, 17, 675–689.

56. Safdar, H.; Amin, A.; Shafiq, Y.; Ali, A.; Yasin, R.; Shoukat, A.; Hussan, M.U.; Sarwar, M.I. A review: Impact of salinity on plant
growth. Nat. Sci. 2019, 17, 34–40.

57. Mbarki, S.; Sytar, O.; Cerda, A.; Zivcak, M.; Rastogi, A.; He, X.; Zoghlami, A.; Abdelly, C.; Brestic, M. Strategies to mitigate the salt
stress effects on photosynthetic apparatus and productivity of crop plants. In Salinity Responses and Tolerance in Plants; Springer:
Cham, Switzerland, 2018; pp. 85–136.

58. Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Effect of salinity stress on plants and its tolerance strategies: A review.
Environ. Sci. Pollut. Res. 2015, 22, 4056–4075. [CrossRef]

59. Tavakkoli, E.; Rengasamy, P.; McDonald, G.K. High concentrations of Na+ and Cl– ions in soil solution have simultaneous
detrimental effects on growth of faba bean under salinity stress. J. Exp. Bot. 2010, 61, 4449–4459. [CrossRef]

60. James, R.A.; Rivelli, A.R.; Munns, R.; von Caemmerer, S. Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed
durum wheat. Funct. Plant Biol. 2002, 29, 1393–1403. [CrossRef]

61. Acosta-Rangel, A.M.; Li, R.; Celis, N.; Suarez, D.L.; Santiago, L.S.; Arpaia, M.L.; Mauk, P.A. The physiological response of ‘Hass’
avocado to salinity as influenced by rootstock. Sci. Hortic. 2019, 256, 108629. [CrossRef]

62. Turhan, H.; Genc, L.; Smith, S.; Bostanci, Y.; Turkmen, O. Assessment of the effect of salinity on the early growth stage of the
common sunflower (Sanay cultivar) using spectral discrimination techniques. Afr. J. Biotechnol. 2008, 7, 750–756.

http://doi.org/10.21273/HORTSCI.30.4.905B
http://doi.org/10.5344/ajev.2014.14019
http://doi.org/10.1080/01904167.2016.1263324
http://doi.org/10.1093/jxb/erg064
http://doi.org/10.1016/j.ecoenv.2018.04.042
http://www.ncbi.nlm.nih.gov/pubmed/29730402
http://doi.org/10.1080/01904167.2019.1628977
http://doi.org/10.1016/j.scienta.2019.02.071
http://doi.org/10.17660/ActaHortic.1976.57.22
http://doi.org/10.21273/JASHS.132.2.253
http://doi.org/10.21273/HORTSCI13198-18
http://doi.org/10.1023/A:1010370802773
http://doi.org/10.1016/j.sajb.2012.06.004
http://doi.org/10.1016/j.envexpbot.2009.04.008
http://doi.org/10.1081/PLN-100108778
http://doi.org/10.1111/ajgw.12071
http://doi.org/10.1007/s11356-014-3739-1
http://doi.org/10.1093/jxb/erq251
http://doi.org/10.1071/FP02069
http://doi.org/10.1016/j.scienta.2019.108629


Plants 2021, 10, 1672 17 of 17

63. Devitt, D.; Morris, R.; Fenstermaker, L. Foliar damage, spectral reflectance, and tissue ion concentrations of trees sprinkle irrigated
with waters of similar salinity but different chemical composition. HortScience 2005, 40, 819–826. [CrossRef]

64. Tu, Y.-H.; Johansen, K.; Phinn, S.; Robson, A. Measuring canopy structure and condition using multi-spectral UAS imagery in a
horticultural environment. Remote Sens. 2019, 11, 269. [CrossRef]

65. Raeva, P.L.; Šedina, J.; Dlesk, A. Monitoring of crop fields using multispectral and thermal imagery from UAV. Eur. J. Remote Sens.
2019, 52 (Suppl. 1), 192–201. [CrossRef]

66. Zhou, Y.; Tang, N.; Huang, L.; Zhao, Y.; Tang, X.; Wang, K. Effects of Salt Stress on Plant Growth, Antioxidant Capacity, Glandular
Trichome Density, and Volatile Exudates of Schizonepeta tenuifolia Briq. Int. J. Mol. Sci. 2018, 19, 252. [CrossRef]

67. Çelik, Ö.; Atak, Ç.; Suludere, Z. Comparative transcriptional profiling of soybean orthologs of Arabidopsis trichome developmen-
tal genes under salt stress. Plant Mol. Biol. Report. 2018, 36, 82–93. [CrossRef]

68. Dolatabadian, A.; Sanavy Samm Ghanati, F. Effect of salinity on growth, xylem structure and anatomical characteristics of
soybean. Not. Sci. Biol. 2011, 3, 41–45. [CrossRef]

http://doi.org/10.21273/HORTSCI.40.3.819
http://doi.org/10.3390/rs11030269
http://doi.org/10.1080/22797254.2018.1527661
http://doi.org/10.3390/ijms19010252
http://doi.org/10.1007/s11105-017-1059-6
http://doi.org/10.15835/nsb315627

	Introduction 
	Materials and Methods 
	Experimental Site and Plant Material 
	Mineral Analysis, Osmolality, and Trichoms 
	Salt Damage Visual Survey 
	Vegetation Indices and Photosynthetic Parameters 
	Remotely Sensed Vegetation Indices 
	Productivity 
	Stem Water Potential (SWP) 
	Susceptibility Rating 
	Statistical Analysis 

	Results 
	Discussion and Conclusions 
	References

