Cutting Edge Technologies for Avocado Production

David Crowley Dept of Environmental Sciences, University of California, Riverside

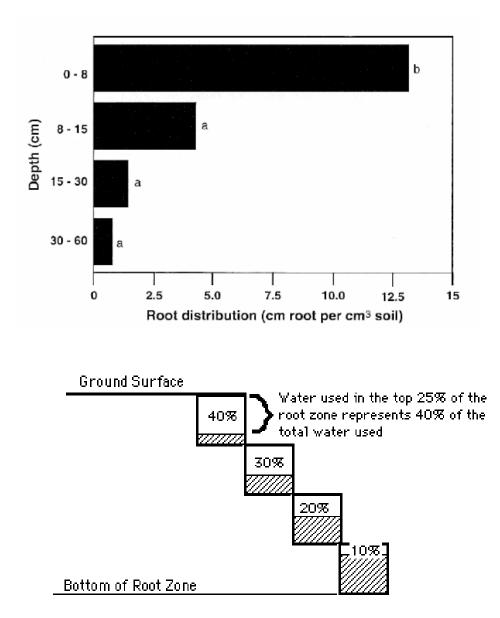
New Technologies for Avocado Production

High Density plantings Mounded rows Growth regulators

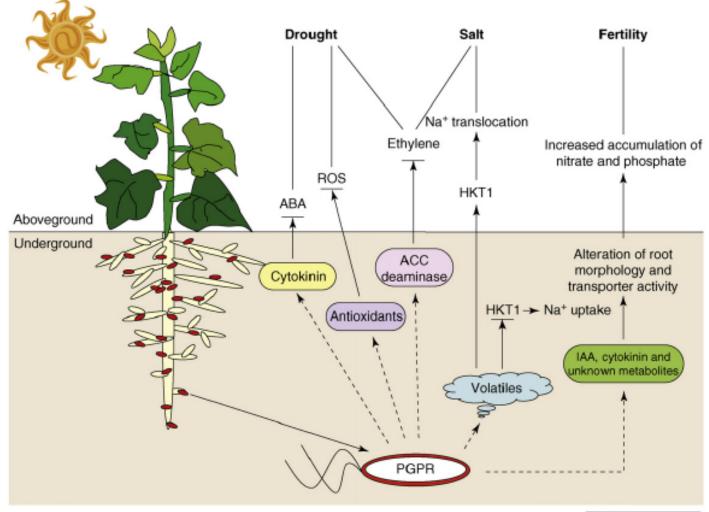
Improved rootstocks for salinity tolerance and resistance to Phytophthora root rot

Use of charcoal (biochar) amendments Improved CEC, pH, bulk density, soil structure Improved water holding, aeration, root growth Increased microbial activity

Soil inoculation with PGPR (plant growth promoting rhizobacteria) Control of phytophthora root rot Stimulation of root growth Improved water use efficiency Improved salinity tolerance

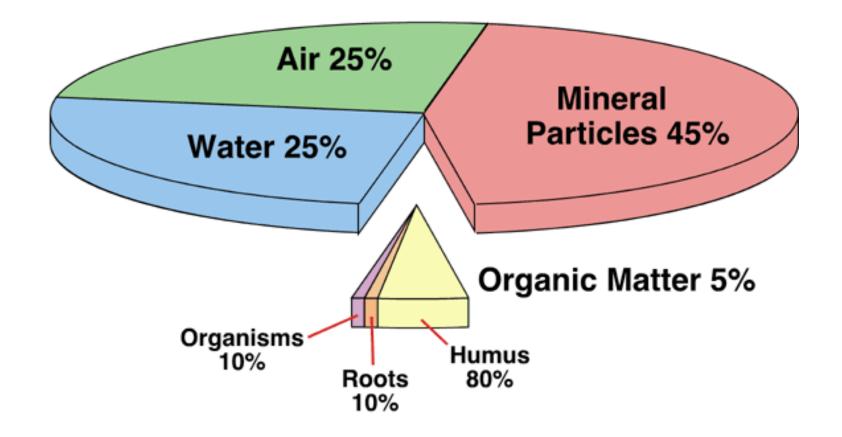

Online Decision Support Tools Irrigation and Fertilizer Management Neural network based disease and yield forecasting models

High Density Plantings Mounded rows with mulch



Root Depth Distribution and Water Use by Avocado

Effects of plant growth promoting rhizosphere bacteria (PGPR) on plant drought and salt stress. Yang et al., 2001


TRENDS in Plant Science

Priorities for California Avocado Production Soil and Water Management (Topics for Today)

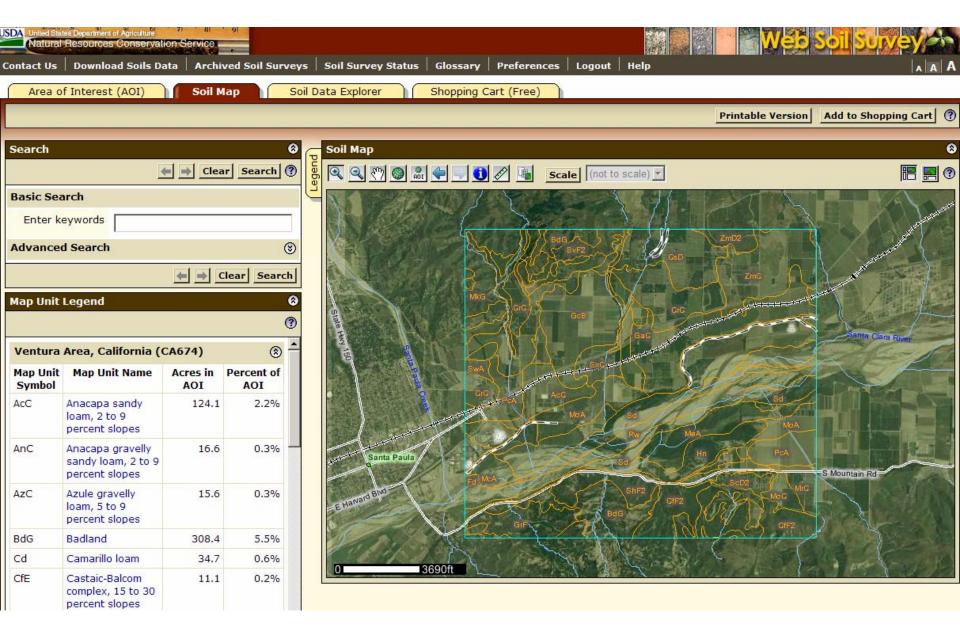
Soil physical and chemical properties Root growth

Irrigation water Salinity Irrigation management

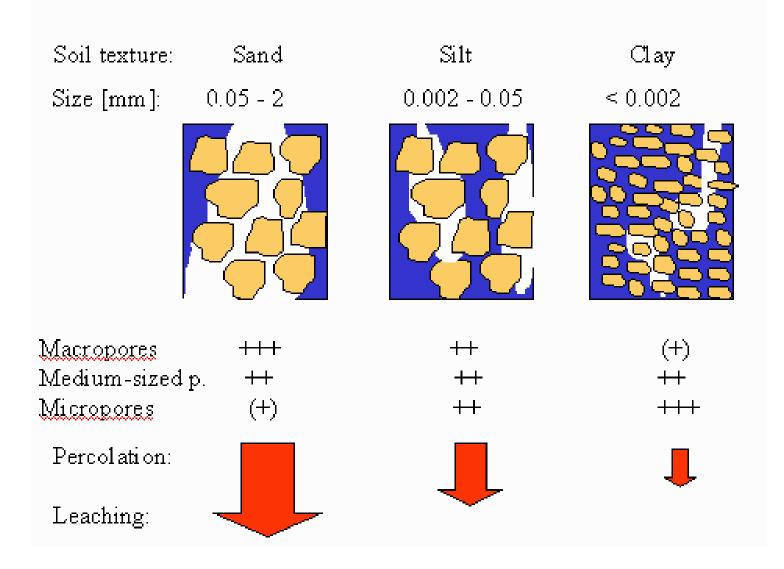
Results of the CAC Salinity Research Project Root stocks selections Soil and water factors contributing to salinity Computer guided decision support tools The ideal soil: no stress for air or water, good soil structure, low bulk density, supports beneficial microbial activity, root growth

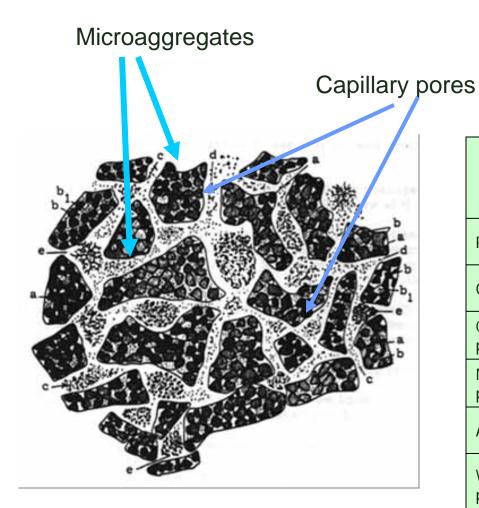
Soils Used for Avocado Production in California

Physical Properties

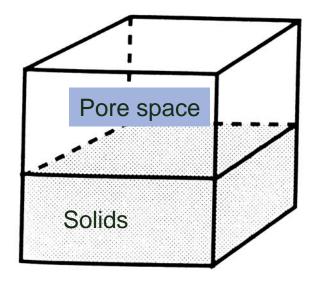

- Texture Bulk Density Porosity Stable Aggregates
- Sandy to Heavy Clay 1.2 – 1.6 g/cm³ 20% to 50% 5% to 30%

Chemical Properties pH Cation Exchange Organic Matter

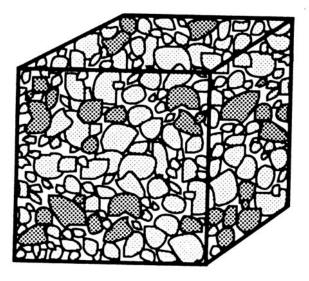

5 – 8 2 – 30 meq / kg 0.1 – 4%


Finding your soil: USDA Web Soil Survey

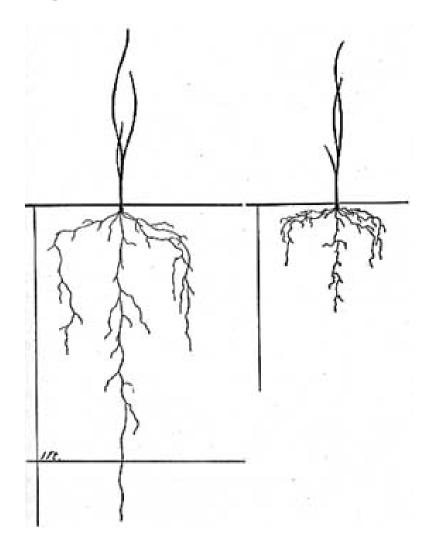
The Role of Soil Texture (Sand, Silt, Clay)



Aggregates: Cemented units of soil particles and organic matter.



	In structureless soil, %	In structured soil, %
Porosity	50	55-60
General porosity	45-48	20-25
Capillary porosity	2-5	30-35
Noncapillary porosity	5	30-40
Air content	3-5	20-25
Water permeability (in mm/hr)	1.6	0.7


Bulk Density

a. Soil volume of solids and pore space

b. Mixture of air, water, minerals, organic matter Root growth in loose and compacted soils:

Typical Soil Bulk Densities

0.2 0.4 0.6 8.0 Bulk density g/cm3 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

Organic rich histosols

Uncultivated forest / grassland

Cultivated clay and silt loams

Cultivated sandy loams / sands

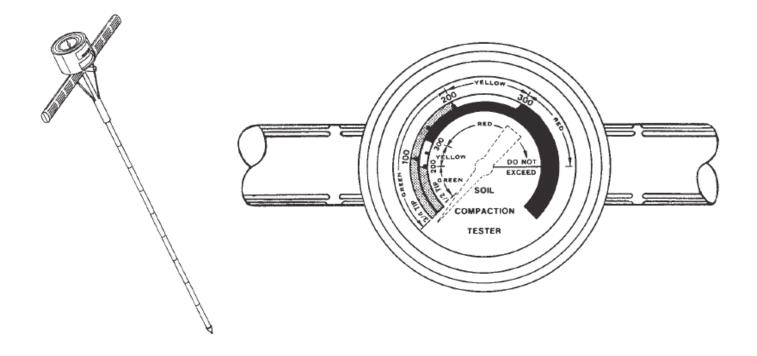
Concrete

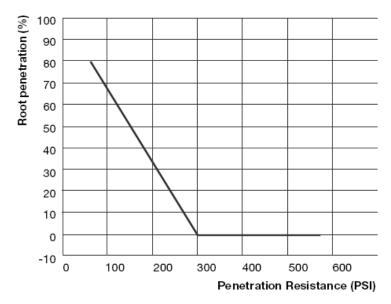
Quartz

Bulk density measurements

Press steel cylinder into soil to extract an "intact soil core" of known volume

Shave off ends with knife, dry soil core and weigh to obtain weight


Measurement of soil resistance to root penetration



Soil penetrometer

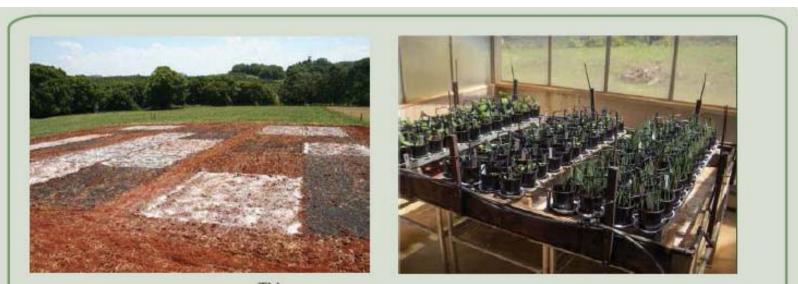
Penetrometer: Soil Compaction Tester

Root Penetration and Soil Resistance

The penetrometer simulates root growth. Root growth decreases linearly with increasing penetration resistance, until practically stopping above 300 psi. Remember, however, that roots may still penetrate soil with a penetration resistance greater than 300 psi if natural cracks and pores are present.

Percentage of measuring points having cone index > 300 psi in top 15 inches	Compaction rating	Subsoiling recommended
< 30	Little-none	No
30-50	Slight	No
50-75	Moderate	Yes
>75	Severe	Yes

Multiple sampling locations (points) need to be measured in the field. Improving Soil Physical Properties: Bulk Density


Prepare new plantings with mounded rows, include compost or other organic matter

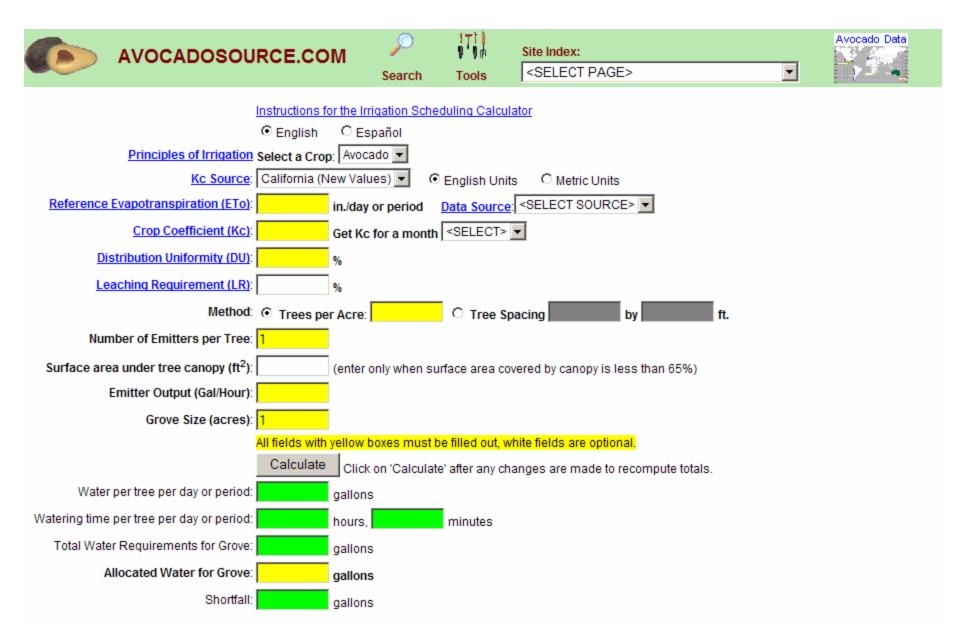
Mulch applications

Gypsum applications in clay soils

Charcoal amendments (Biochar)

Charcoal amendments to soil at 20 tons per acre increase soil organic matter, cation exchange, microbial activity, and plant yields, while storing huge amounts of carbon in soil.

Pot trials using AgricharTM soil amendment had significant results – doubling the crop yield of soybeans and tripling that of wheat when applied at the rate of 10 tonnes to the hectare.¹


Charcoal amendments to avocado soils are being evaluated in Australia and New Zealand as a means to increase soil organic matter and soil fertility.

New Developments in Irrigation and Salinity Management

- Requirement for improved water use efficiency
 Soil water monitoring
- Irrigation water quality Dealing with salinity
- Soil leaching
- Rootstocks
- Computer decision support tools

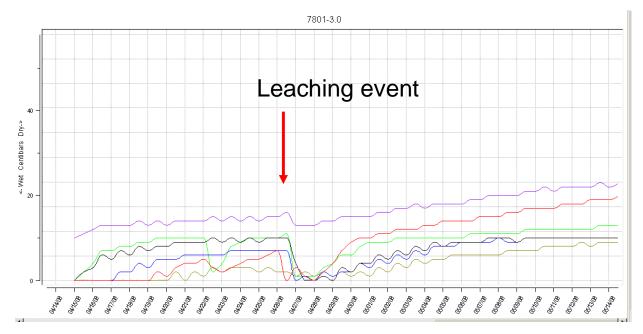
Irrigation and Water Use Efficiency

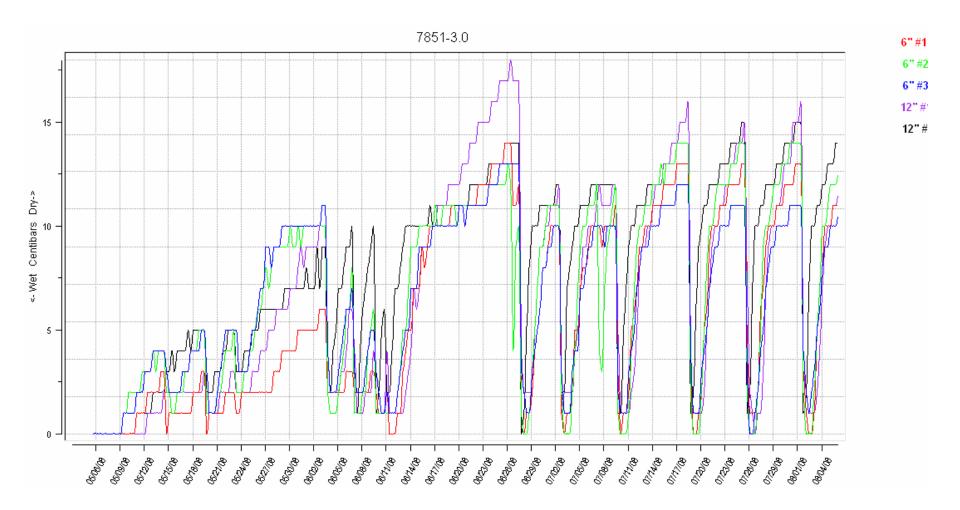
Measurement of Soil Water Potential

Time Domain Reflectometery (TDR)

Absorbent Blocks

Tensionmeter




Water Mark Probes

- 1. Soil temperature
- 2. Tree 1 6 inch
- 3. Tree 2 6 inch
- 4. Tree 3 6 inch
- 5. Tree 1 12 inch
- 6. Tree 2 12 inch
- 7. Tree 3 12 inch
- 8. Tree 1 24 inch

Suitability of Water for Irrigation

Quality	Electrical Conductivity (millimhos/cm)	Total Salts (ppm)	Sodium (% of total salts)	SAR	рН
Excellent	0.25	175	20	3	6.5
Good	0.25-0.75	175-525	20-40	3-5	6.5-6.8
Permissible	0.74-2.0	525-1400	40-60	5-10	6.8-7.0
Doubtful	2.0-3.0	1400-2100	60-80	10-15	7.0-8.0
Unsuitable	>3.0	>2100	>80	>15	>8.0

Table D. Metropolitan Water District2008 Year Average

L	ake Mathews	Lake Perris	Lake Skinner
Silica	8	16	9
Calcium	74	26	55
Magnesium	30	14	22
Sodium	102	62	80
Potassium	5	4	4
Bicarbonate	155	111	136
Sulfate	265	49	170
Chloride	98	86	84
Nitrate	1	0.2	0.3
Total Dis. Sal	t 661	312	494
Conductance	(EC) 1.1	0.57	0.8

Would you put this on your orchard?

How Much Salt is in Your Water?

1 Acre Foot = 1,233,000 Liters X TDS = 500 mg / Liter

615 kg of TDS Salt

How Much Sodium Chloride is in Your Water?

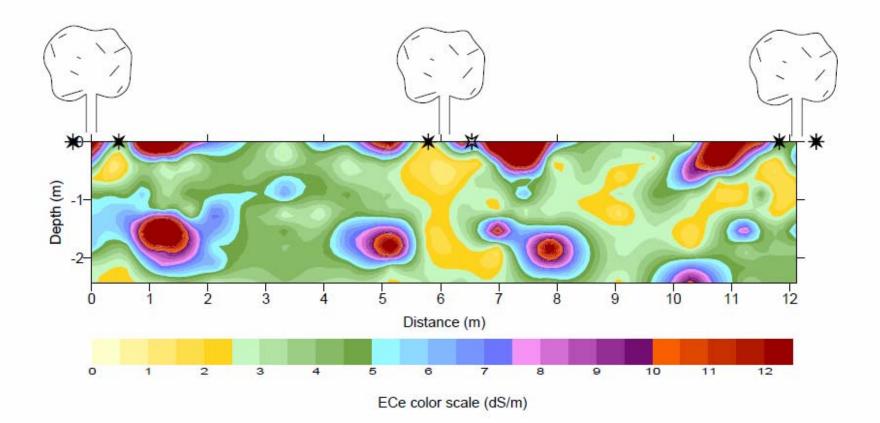
1 Acre Foot = 1,233,000 Liters X Na - 54 to 101 mg/L Cl - 71 to 96 mg /L 66 - 124 kg Na

87 - 118 kg Cl

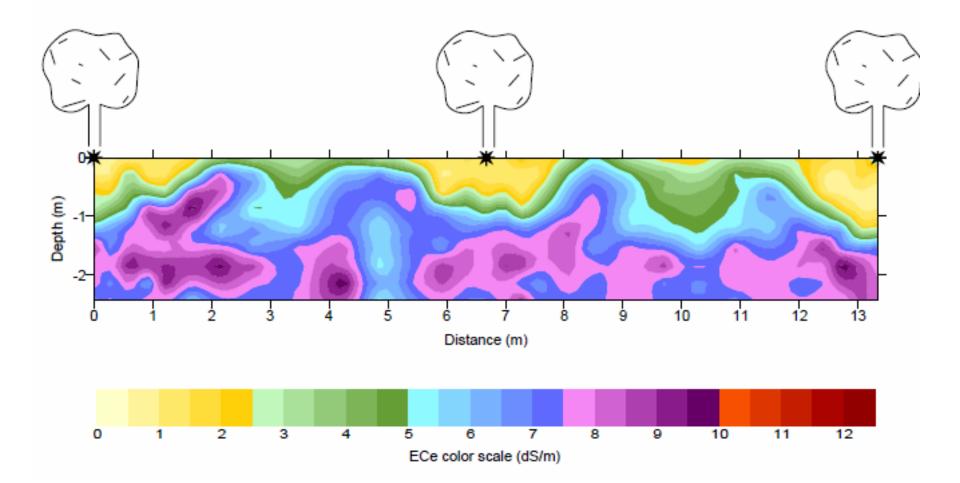
153 - 242 kg NaCl

How Much Salt is in Your Water?

4 Acre Feet: 612 - 968 kg NaCl

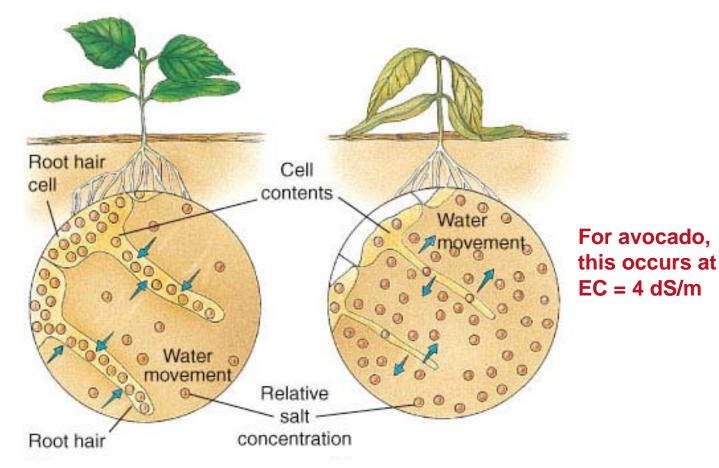


2464 kg total dissolved salt

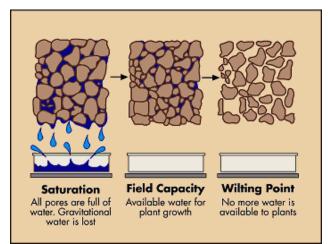

Soil Leaching: Pushing Salt Down

Salt Accumulation in Tree Crop Orchards Using Drip Irrigation

Soil Salinity Accumulation in Orchards with Drip and Micro-spray Irrigation in Arid Areas of California http://www.itrc.org/reports/salinity/treecropsalinity.pdf ITRC Report No. R 03-005

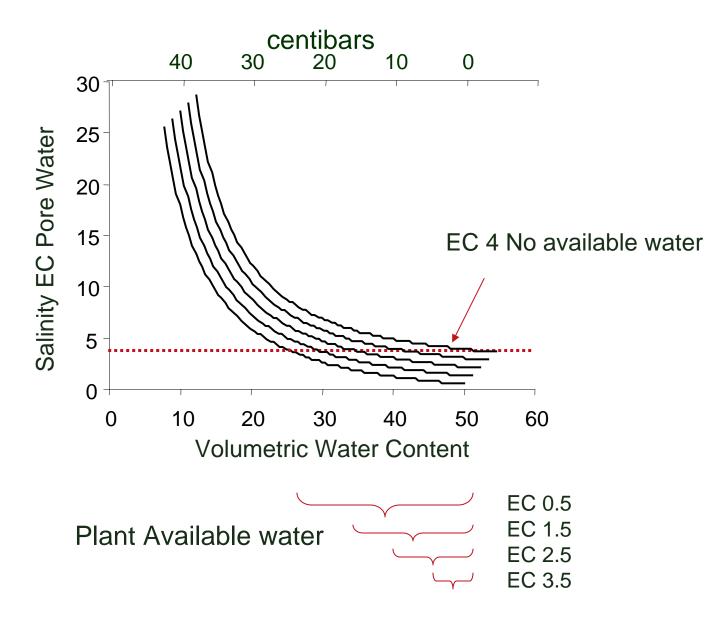

Salt Accumulation in Tree Crop Orchards Using Micro-Spray Irrigation

CDWR 2003


Soil Salinity Accumulation in Orchards with Drip and Micro-spray Irrigation in Arid Areas of California http://www.itrc.org/reports/salinity/treecropsalinity.pdf ITRC Report No. R 03-005

The Problem with Total Dissolved Salt: High Salt Inhibits Plant Water Uptake

Water enters the plant by c Salt in the soil sucks water out from the plant roots


Salinity Calculations for Soil At Different Moisture Levels

Irrigation water EC = 1Assume no prior accumulation, Then as soil dries:

Soil Status	Water Content	CentiBars	EC
Saturation	50%	0	1
Field Capacity	25%	3	2
Air dry	10%	40	5
Wilting point	<5%	>100	10

water water everywhere, but nothing

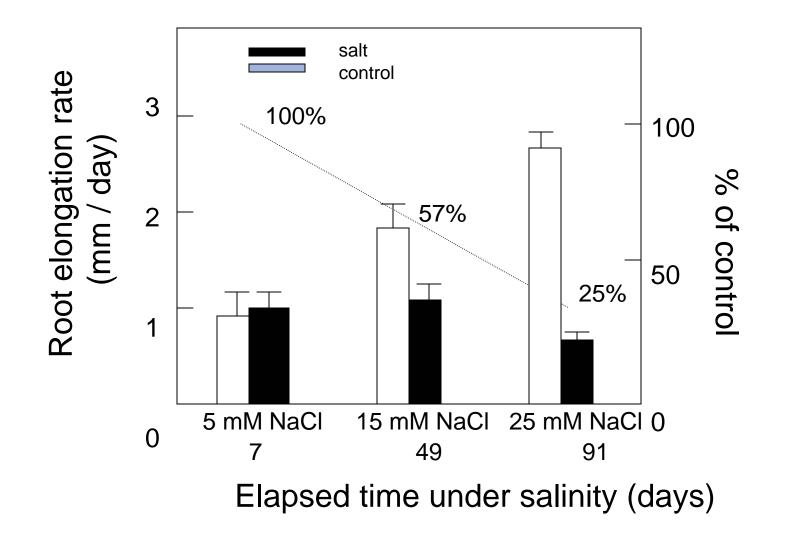
Specific Ion Toxicity

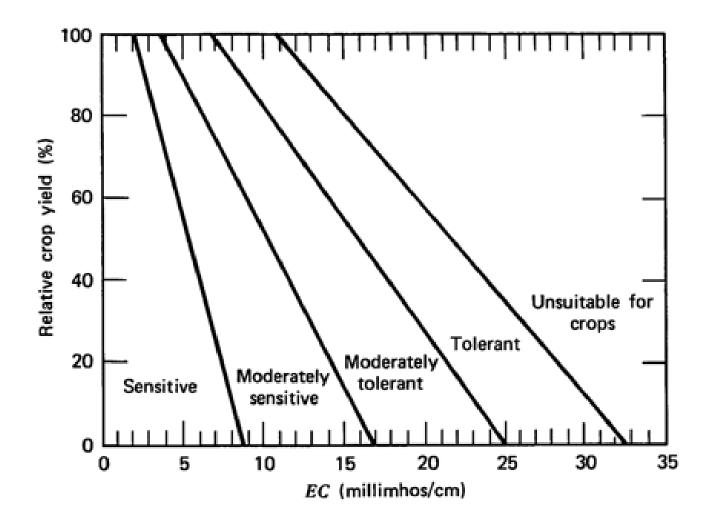
Salts in irrigation water include toxic minerals:

Calcium Ca⁺⁺ Magnesium Mg⁺⁺ Sodium Na⁺ Potassium K⁺ Sulfate SO₄²⁻ Carbonate CO₃²⁻ *Chloride Cl*⁻ Uptake and Distribution of Radiolabeled Chloride and Sodium (Kadman ca 1960s, avocadosource.com)

Chloride

Combined Effects of Chloride and Sodium Toxicity

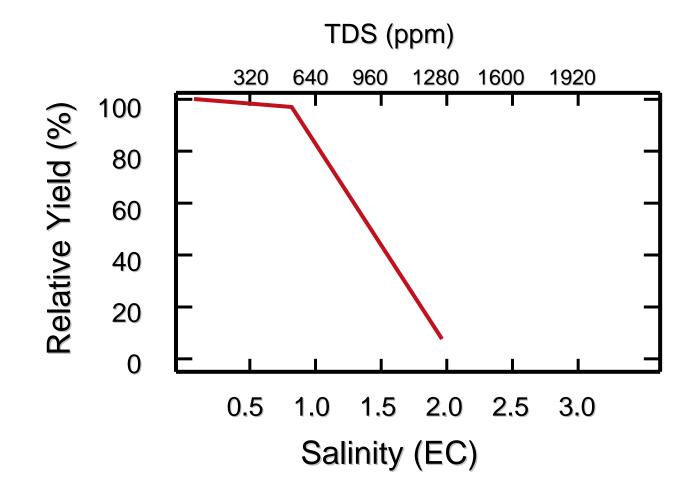



Chloride 0.58% Sodium 0.35%

Chloride 0.61%

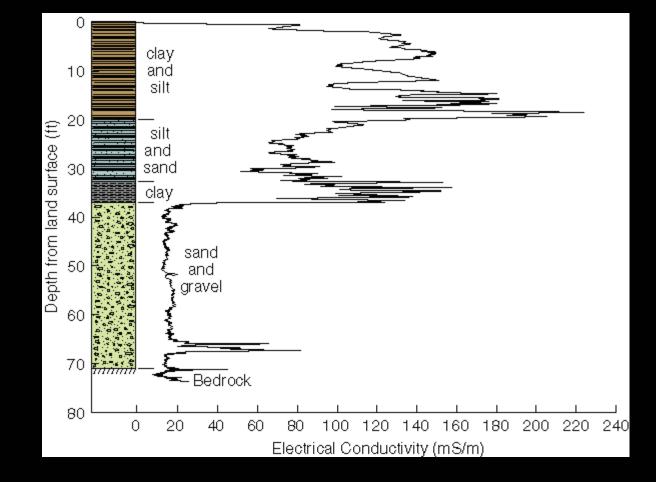
Effects of Chloride Toxicity on Root Growth

Avocado is one of the most saline sensitive crops, and is subject to yield reduction when irrigated with saline irrigation water. This is due to a combined effect of dissolved solids (EC) and chloride toxicities.



Сгор	Salinity Threshold	% Productivity Decrease
	(saturated paste EC, mmho/cm)	per mmho/cm Increase
Alfalfa	2.0	7.3
Barley	8.0	5.0
Beans	1.0	18.9
Birdsfoot Trefoil	5.0	10.0
Clover - red	1.5	12.0
Corn - grain	1.7	12.0
Fescue	3.9	5.3
Flax	1.7	12.0
Potatoes	1.7	12.0
Perennial ryegrass	5.6	7.6
Soybeans	5.0	20.0
Strawberry	1.0	33.3
Wheat	6.0	7.1
Wheatgrass - Crested	3.5	4.0
Wheatgrass - Tall	7.5	4.2

Table 6. Effect of Root Zone Salinity on Crop Productivity of Selected Crops (Carter, 1981).


http://www.umanitoba.ca/afs/agronomists_conf/2002/pdf/cavers.pdf

Avocado Yield Function for Irrigation Water Salinity Oster and Arpaia, J. Am Soc. Hort Sci. 2007

Measuring Salinity: Electrical Conductivity

Units for measuring salinity, and conversion factors.

Conversion factors relating total dissolved salts or pure NaCl to an electrical conductivity (EC) of 1 dS/m (1 deciSiemen/metre) are given, along with equivalent units of various types, old and new.

The conversion of EC of 1 dS/m to total dissovled salts (640 mg/L) assumes a composition of salts that is common in groundwater across the world. The exact factor varies from 530 (if the salt is predominantly NaCl) to 900 (if the salts are formed predominantly from divalent ions).

Measurement and units	Application	1 dS/m is equal to:	Equivalent units
Conductivity (dS/m)	soils	1	1 dS/m = 1 mS/cm = 1 mmho/cm
Conductivity (µS/cm)	irrigation and river water	1000 µS/cm	1 μS/cm = 1 μmho/cm
Total dissolved salts (mg/L)	irrigation and river water	640 mg/L (approx.)	1 mg/L = 1 mg/kg = 1 ppm
Molarity of NaCl (mM)	laboratory	10 mM	1 mM = 1 mmol/L

TDS/Conductivity/Salinity Pen

Collect Soil Cores 0-6", 6-12", 12-18"

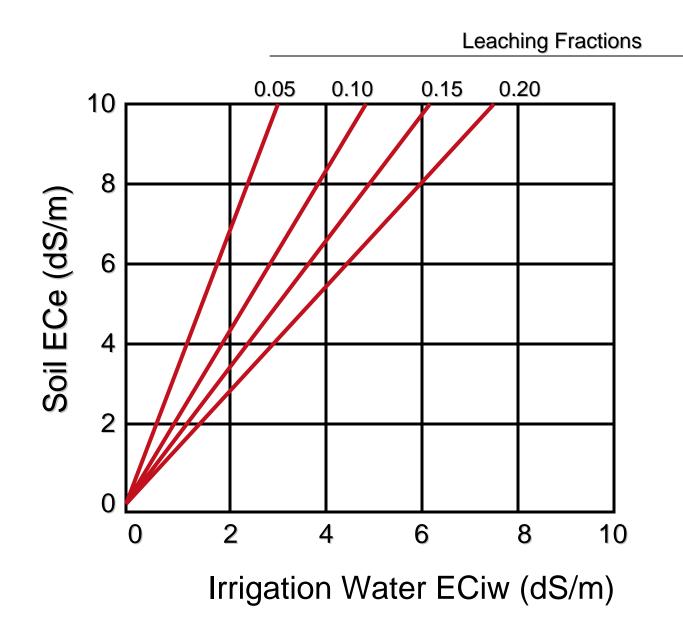
Prepare 2:1 Water:Soil Extracts Distilled Water

Measure EC Multiply x 4 (to estimate EC to soil EC at Field Capacity)

If EC > 0.5 for 2:1 water extract then it is time to leach (equivalent to an EC of 2.0 at field capacity)

Leaching Fraction

$$LR = \frac{ECiw}{5^*EC_{ts} - EC_{iw}}$$


For EC_{ts} 0.67 for avocado and EC 1 irrigation water

$$LR = \frac{1.0}{5^* 0.67 - 1} = .42$$

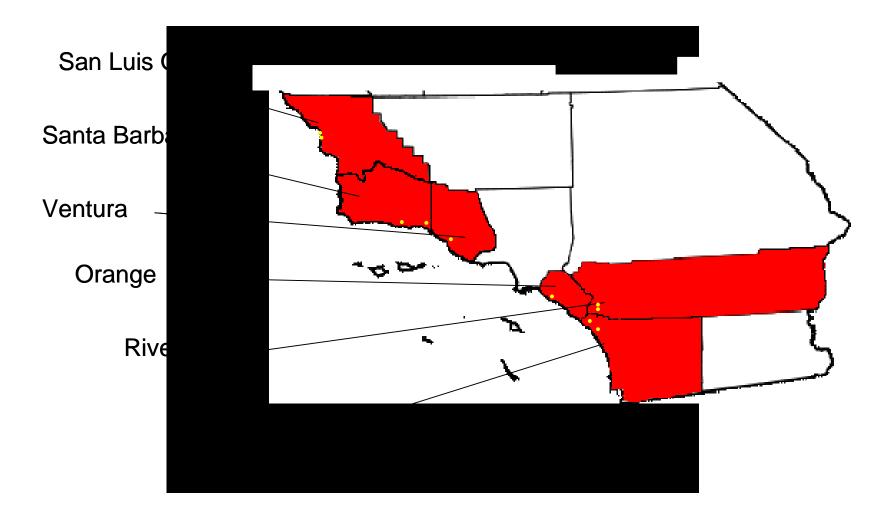
 $EC_{ts} = EC$ threshold sensitivity $EC_{iw} = EC$ irrigation water

Rhoades 1974

Leaching Fraction

Salinity-Chloride Interactions: Their Influence on Yields

David Crowley and Mary Lu Arpaia Dept of Environmental Sciences, University of California, Riverside, and UC Kearney Agricultural Center, Parlier, CA Cooperating Investigators: Ben Faber and Gary Bender


Current Research

Salinity – Chloride Interactions and Their Effects on Avocado Yields

Objectives:

- **1. Examine salinity effects on the yields of avocado trees across the main production areas in S. California.**
- 2. Compare salinity performance of the major rootstocks now being used for avocado production.
- **3.** Evaluate the specific ion toxicity effects of chloride and sodium on root growth.

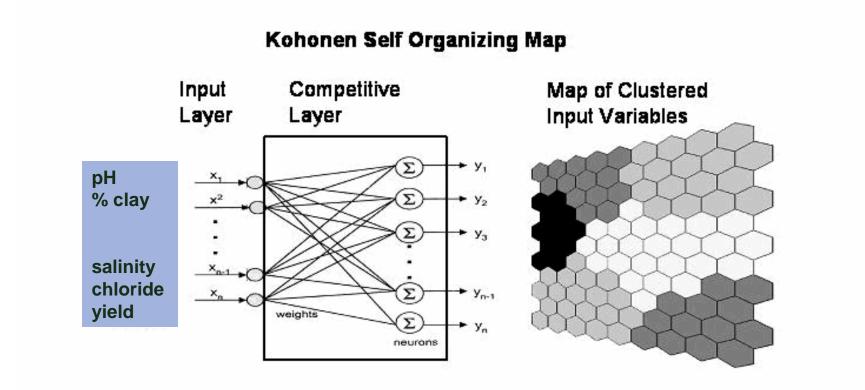
Orchard Locations

Rootstocks: Duke 7, Toro Canyon, Dusa, Thomas, Mexican

Experimental Variables Analyzed for each Location

Soils Data	Management	Rootstock Performance	
Texture (clay)	Irrigation water quality	Fruit Yield	
Salinity	Irrigation scheduling	Macronutrient uptake N,P,K	
рН	Leaching	Micronutrients	
Organic matter	Fertilization	Root growth	
Alkalinity	Canopy management	Phytophthora	
Hydraulic conductivity	Use of mulches	Alternate bearing patterns	

Duncan Abbott Orchard Santa Barbara



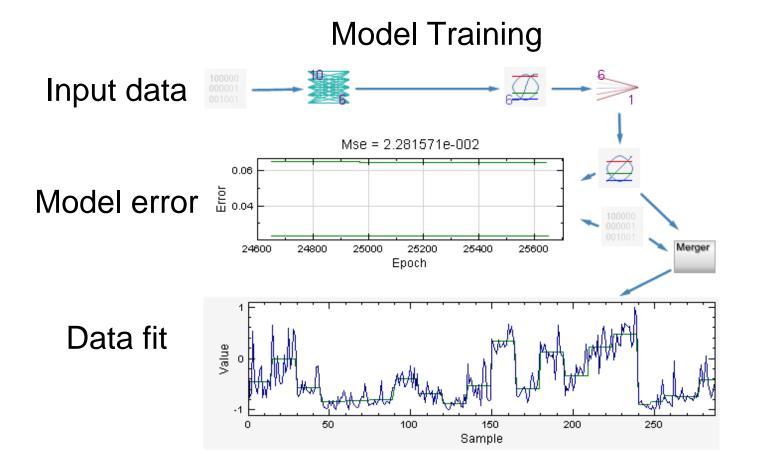
Application of Artificial Neural Networks for Examining Relationships of Plant, Soil, and Water Variables Affecting Avocado Yields

Quantification of Root Growth Responses to Salinity Stress

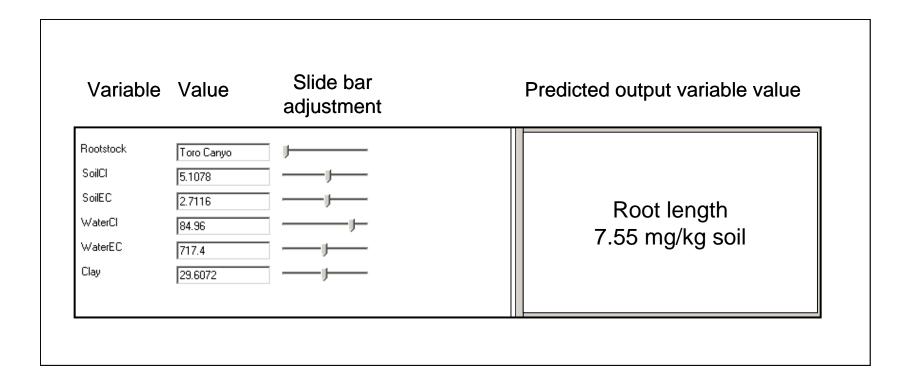
Variables analyzed

Root biomass / root length measurements 0-6, 6-12, and 12-18 inch soil cores Soil chemical and physical analyses Water EC, Cl

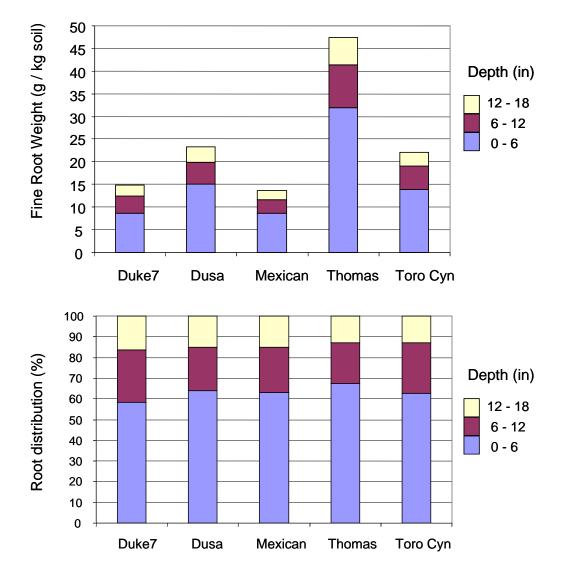
ANN Model Output:


Rootstock variations in root mass and depth distribution Reductions in root weight in relation to chloride and soil salinity Quantification of Chloride Uptake in Relation to Irrigation Water and Soil Salinity Management

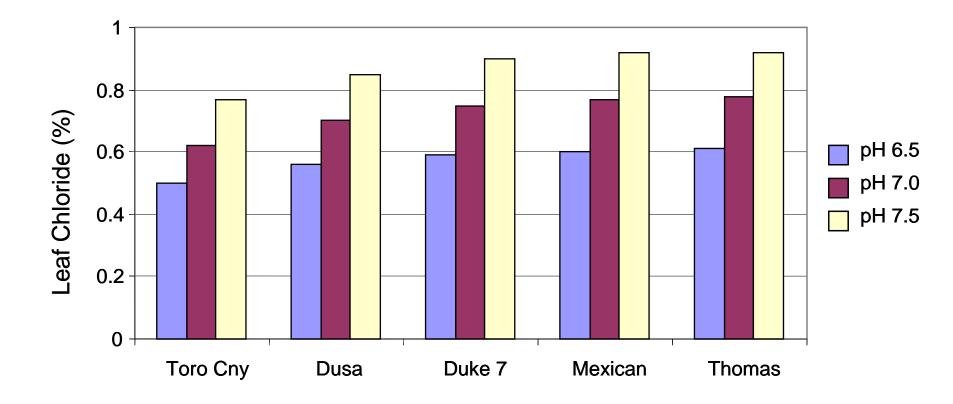
Variables Analyzed:

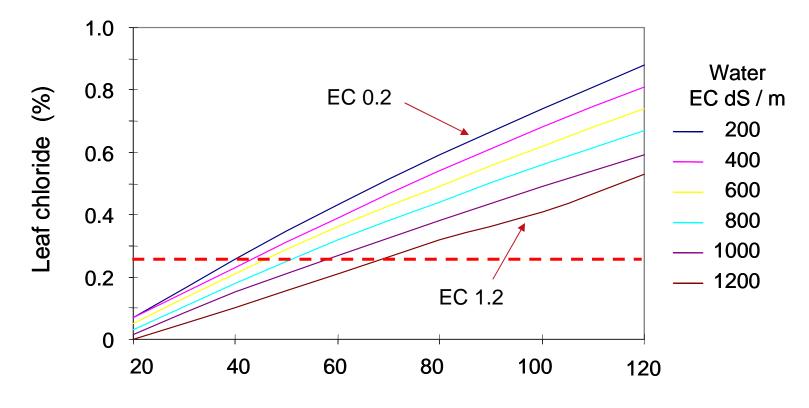

Soil CI, EC, clay content, pH Rootstock Root length Irrigation water quality EC, CI

Model Output: Leaf chloride content

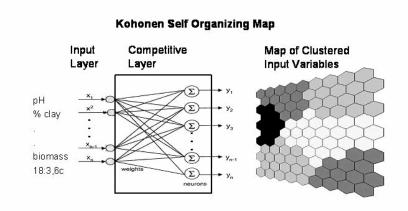

ANN Predictive Modeling of Soil and Water Factors on Avocado Leaf Chloride Content, Root Growth and Yields


ANN Model Output and Sensitivity Analysis of Soil and Water Factors Affecting Root Length


Root weight (A) and root distribution (B) in the soil profile for five avocado rootstocks grown across a 400 mile transect of the avocado production area in S. California


Predicted leaf chloride contents of Hass scions grafted on to five different rootstocks. The ANN model parameters are fixed for soil ECe = 4.0 dS/m; water EC 0.8 dS/m; soil pH7; Clay 30%. The dashed bar indicates 0.25% leaf chloride content at which leaf burn symptoms appear.

ANN predicted effect of changes in soil pH on leaf chloride content for five avocado rootstocks. Additional parameters were set under relatively harsh conditions that are associated with elevated chloride levels: soil ECe= 4.0 dS/m, soil Cl 8 mg/kg; irrigation water EC 0.8 dS/m; irrigation water chloride = 50 mg/L; soil clay content 50%.



ANN model output illustrating the inverse relationship between irrigation water salinity and chloride concentrations on accumulation of chloride in leaves of Hass on Toro Canyon rootstock. Fixed model values were pH 7, 35% Clay, soil ECe 2.0, and soil Cl at 4 mg/kg

Water Chloride (mg / L)

Decision Support Tools for Integration of Soil Chemical Physical Properties, Root Stock Selection, and Prediction of Economic Benefits

ne Soil Survey: CA, AZ	, NV			
nitted by dylan on Tue, 2005-05-31 17:3 te news on recent updates	7.			
Zoom to Street Address:				Click o
Address:	GO		A	24
Zoom to CA Zip Code:			1	09.4
CA Zip GO			A	The se
Zoom to Geographic Coord	dinates:		NA.	12
Decimal Degrees ongitude: West	Degrees Min	nutes Seconds	10.7	A.
atitude: * North	*			121

Soil and Climate Data

Water Quality Data, Rootstocks Used Yield Data

Questionnaire

Recommendations

Salinity Research - Benefits to the Industry

- Cost benefit analysis for irrigation water quality versus fruit yields over the full range of salinity levels that occur in water supplies used by avocado growers.
- Optimization of irrigation regimes for use of saline irrigation waters based on management of chloride versus total dissolved salts.
- Basic information on mechanisms of salinity stress and tolerance in avocado rootstocks. Improved guidance to growers for appropriate rootstock selection.

Dealing with Salinity

Proper Irrigation Management

Gypsum

Leaching

Organic Matter

Rootstock Selection

CAC Salinity Project Field Visit Time Table 2009

<u>Tasks</u>

Locations and Dates

Spring grower consults,	South Counties	Central Counties	North Counties	Moro Bay
Data logger setups				
Spring salinity measurements,	RMV Mar 2	McFadden Feb 27	Miller Mar 26	Staller Mar 25
Sample roots for mycorrhizae	Woodworth Mar 3	Steve Smith Feb 27	Abbot Mar 26	Tyson Davis Mar 25
Soil sample for PLFA microbial	Deardorff Mar 3	Mud Creek Feb 27	Van der Kar Mar 26	
community analyses	Carey Mar 4	Lyle Snow Feb 27		
Harvest Yield Data Collection	RMV June 4	McFadden May 30	Miller NA 09	Bob Staller
Data logger backup, site check	Woodworth June 2	Steve Smith	Abbot	Tyson Davis
Combined with May-June visits as	Deardorff June 2	Mud Creek	Van der Kar Mar 26	
feasible	Carey June 2	Lyle Snow		
Early Summer Soil Samples	RMV June 5	McFadden May 30	Miller	Bob Staller
May-June 09	Woodworth NA 09	Steve Smith May 30	Abbot	Tyson Davis
	Deardorff June 2	Mud Creek May 30	Van der Kar	
	Carey June 2	Lyle Snow		
Mid Summer Soil Samples (begin	RMV	McFadden	Miller	Bob Staller
mid July)	Woodworth	Steve Smith	Abbot	Tyson Davis
	Deardorff	Mud Creek	Van der Kar	
	Carey	Lyle Snow		
Late Summer Soil Samples (end	RMV	McFadden	Miller	Bob Staller
of August)	Woodworth	Steve Smith	Abbot	Tyson Davis
	Deardorff	Mud Creek	Van der Kar	
	Carey	Lyle Snow		

Typical Soil Water Analysis for Well Water San Diego County

SUBMITTED BY:	CROWLEY, DAVID
DANR SECTION:	AGF: ENV SCI, UCR

COMMODITY: Avocado Irrigation Water

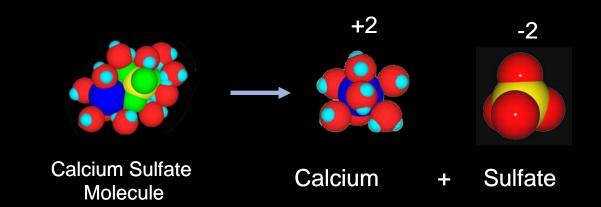
WORK REQ #:	03W003
# OF SAMPLES:	2
DATE RECEIVED:	07/08/02
DATE REPORTED:	07/26/02
DANR CLIENT #:	CROX1
TURN AROUND TIME IN WORKING DAYS:	15

Sample Type: WATER

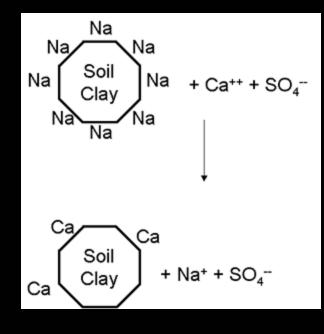
Date Sampled: 24 Oct 01 & 18 May 02; Grower/Location/Project: Stehly/San Diego/ Stehly Salinity

		EC	pН	Ca (Soluble)	Mg (Soluble)	Na (Soluble)	CI	HCO3	CO3	B (Soluble)	SAR	Zn (Soluble)	Cu (Soluble)
		[SOP 815]	[SOP 805]	[SOP 835]	[SOP 835]	[SOP 835]	[SOP 825]	[SOP 820]	[SOP 820]	[SOP 835]	[SOP 840]	[SOP 835]	[SOP 835]
SAMPLE #	DESC	mmhos/cm		meq/L	meq/L	meq/L	meq/L	meq/L	meq/L	ppm		ppm	ppm
1A	24-Oct-01	2.12	8.0	10.0	7.2	6.6	8.3	3.3	0.1	0.1	2	<0.02	<0.02
1B		2.09	8.0	9.8	7.0	6.6	8.4	3.3	0.1	0.1	2	<0.02	<0.02
2A	18-May-02	3.28	8.0	14.7	14.5	9.5	13.6	3.8	<0.1	0.1	2	< 0.02	<0.02
2B		3.17	8.0	14.6	14.4	9.6	13.4	3.8	<0.1	0.1	3	<0.02	<0.02
Method Detection	on Limit:	0.01	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	1	0.02	0.02
Blank Concentr	ation:	-	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-	0.00	0.00
Standard Ref as	s Tested:	0.29	6.4	0.4	0.7	1.8	0.4	2.1	-	0.3	3	50	8.6
Standard Ref A	cceptable:	0.29±0.04	6.5±0.4	0.4±0.2	0.8±0.2	1.7±0.2	0.3±0.2	2.3±0.4	-	0.4±0.2	2±2	50±6	8.7±1.2
Standard Refer	ence:	UCD 005	UCD 004	UCD 005	UCD 005	UCD 005	UCD 005	UCD 005	-	UCD 005	UCD 005	UCD 155	UCD 155

Checked and Approved:

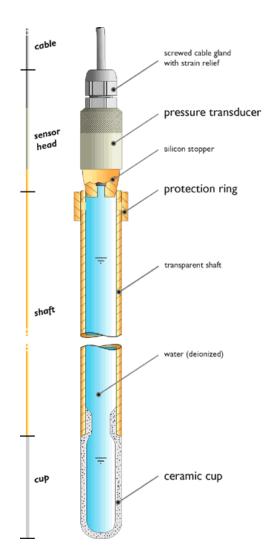

{electronically signed by E. Sue Littlefield}

E. Sue Littlefield, Lab Supervisor


Total Chlorides Range Measured in 2006: 8 to 13 mM, 300 – 560 ppm (1 meq Cl x 35 = ppm)

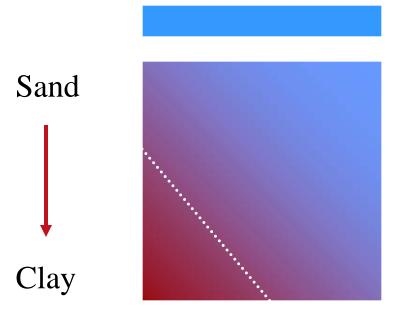
Gypsum Remediation of Soil

Gypsum -Calcium Sulfate


Effect of Pore Size Distribution on Soil Water and Air

Residual	Storage	Transmission		
Pores	Pores	Pores		
< 0.5 uM	0.5 – 50 uM	0.5 – 50 uM		
Water not	Water	Gravity		
available	available	drained		
Always filled	Water or gas	Always filled		
with water	filled	with air		
Sandy soil: 5%	15%	20%		
Clay soil: 25%	30%	5%		

Tensiometers



Salinity of Soil Solution vs Irrigation Water Effect of Soil Texture and Soil Drying

Soils accumulate salt and will be more saline than the irrigation water. The salt further concentrates as the soil dries out.

Irrigation Water: 0.2 -2 mmhos/cm

Saturated Paste: 1-10 mmhos/cm

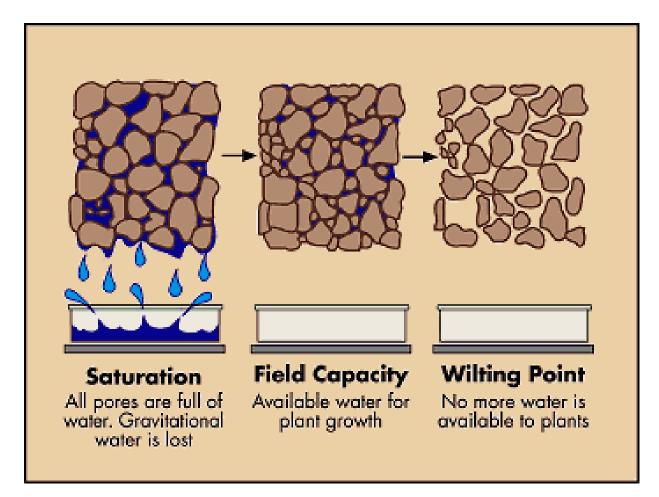
EC 10% Moisture: 10 - 100 mmhos/cm

Wet

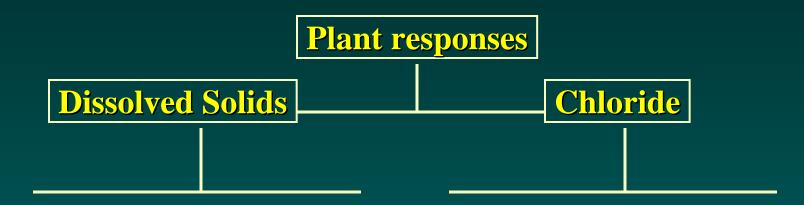
TDS/Conductivity/Salinity Pen

If using irrigation water to prepare extract.

Collect Soil Cores 0-6", 6-12", 12-18"


Prepare 2:1 Water:Soil Extracts Irrigation Water

Measure EC of irrigation water and EC of Irrigation water + soil (2:1)

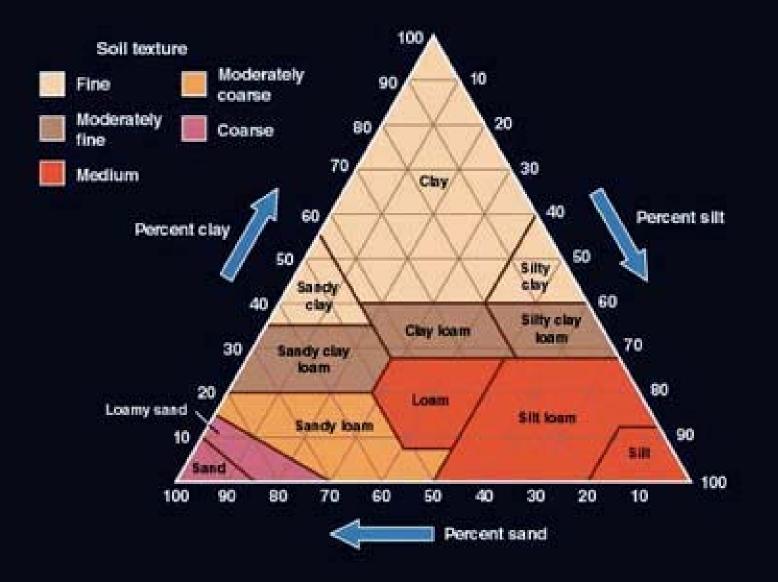

Calculation: (EC of irrigation water + soil) - EC of irrigation water)

If difference > 0.35 dS/m, then time to leach.

Water retention in soils

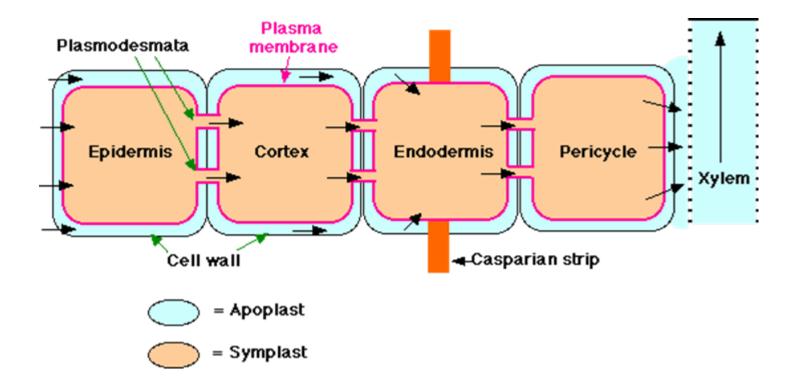
Are there interactive effects of salinity TDS and Cl?

EC 0.57 ->Threshold for Yield Decline 65% yield reduction per dS m⁻¹ increase


Chloride- Threshold Unknown 15 mM -> 40% decline in root growth

Interactions?

Responses of Avocado Rootstocks to High Salinity Irrigation Water


Soil Texture: % Sand, Silt, Clay

The Role of Soil Texture (Sand, Silt, Clay)

Sands – do not bind sodium, little or no effect on soil structure good water infiltration easily leached

Clays – bind sodium, disperses particles strong effect on soil structure poor water infiltration difficult to leach salt

Benefits to the Industry

- Cost benefit analysis for irrigation water quality versus fruit yields over the range of salinity levels that occur in water supplies currently used by avocado growers.
- Optimization of irrigation regimes for use of saline irrigation waters based on management of chloride versus total dissolved salts.
- Basic information on mechanisms of salinity stress and tolerance in avocado rootstocks.
- Recommendations for rootstock selections based on field performance.
- Improved guidance to growers for salinity management.
- Development of an artificial neural network ANN model, that can be deployed on an internet location for use by growers to examine the effects of salinity, chloride, soil properties, rootstocks and management practices on root growth and yields of avocado in California.

Deficiency

Potassium

- Leaf tip and marginal burn, starting on mature leaves
- Small fruit, shriveled seeds
- Slow growth
- Thin twigs, dieback
- Confused with chloride tip-burn which is much more common

Diagnosis and Improvement of

United States Salinity Laboratory Staff

BOX 9.5 LEACHING REQUIREMENT LR

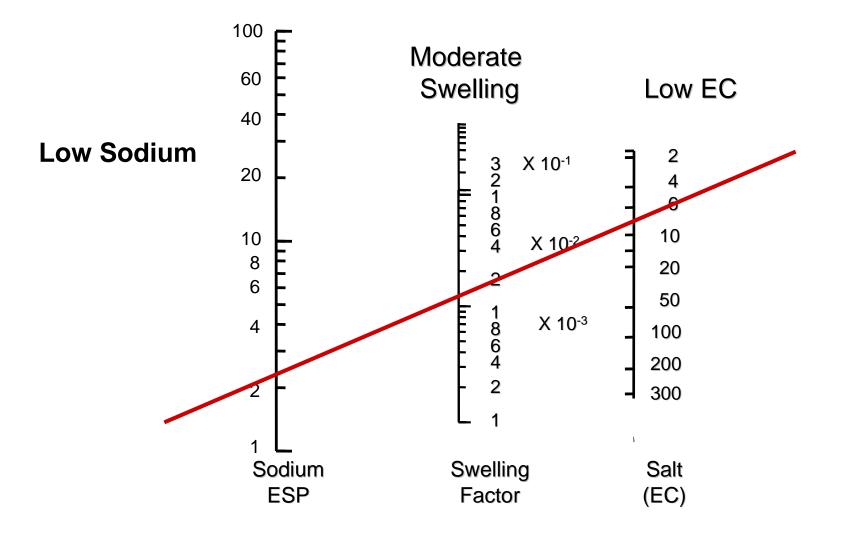
A farmer should know how much leaching water is required to prevent the buildup of salts in a soil or, if the salts are already high, to reduce their levels in the soil. The concept of *leaching requirement LR* has been developed to help farmers make this assessment.

The LR is the irrigation water needed (in excess of that required to saturate the soil) to sufficiently leach the soil so as to assure a proper salt balance for the crop being grown. It is approximated by the ratio of the electrical conductivities (ECs) of the incoming irrigation water EC_w and of the outgoing drainage water EC_{dw} that has an acceptable EC level for the crop being grown.

$$LR = \frac{EC_{\omega}}{EC_{d\omega}}$$

As an example, consider the situation where the EC of the irrigation water EC_{ω} is 2.5 dS/m and that of the acceptable draining soil solution is 5.5 dS/m. Then,

$$LR = \frac{2.5 \text{ dS/m}}{5.5 \text{ dS/m}} = 0.45$$


If this ratio (0.45) is multiplied by the amount of water needed to completely saturate the soil—perhaps 8 cm of water—the water to be leached can be calculated as follows:

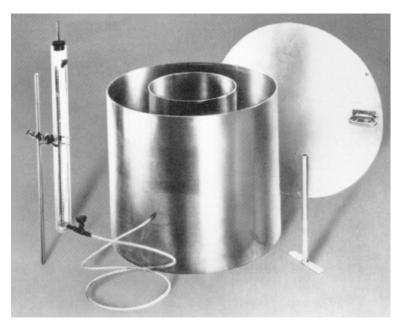
$$8 \text{ cm} \times 0.45 = 3.6 \text{ cm}$$
 water

This is the minimum amount of water that must be leached through a water-saturated soil to maintain proper salt balance. In some cases, additional leaching may be needed to reduce the excess concentration of specific elements such as boron.

The modern means of measuring bulk soil conductivity EC_a using the four-electrode probe or remote-sensing electromagnetic induction devices (see Section 9.15) can be used to readily monitor soil salinity changes resulting from leaching practices.

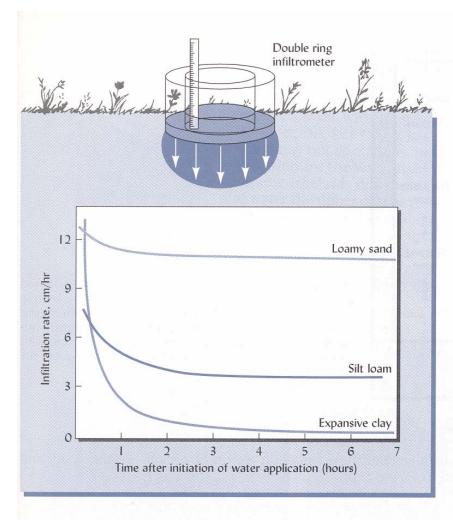
Soil Swelling Factor: Sodium Content (SAR) vs Salt Content (EC)

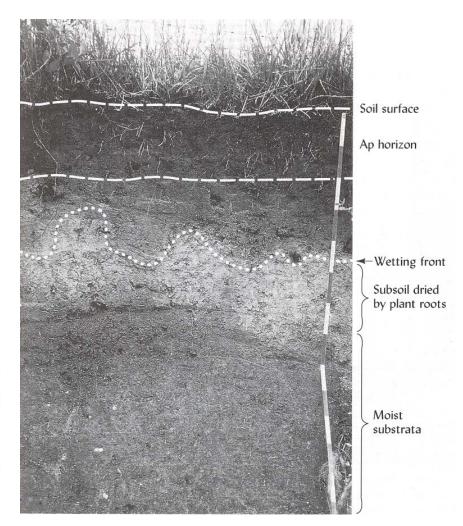
Ezekiel 47:11

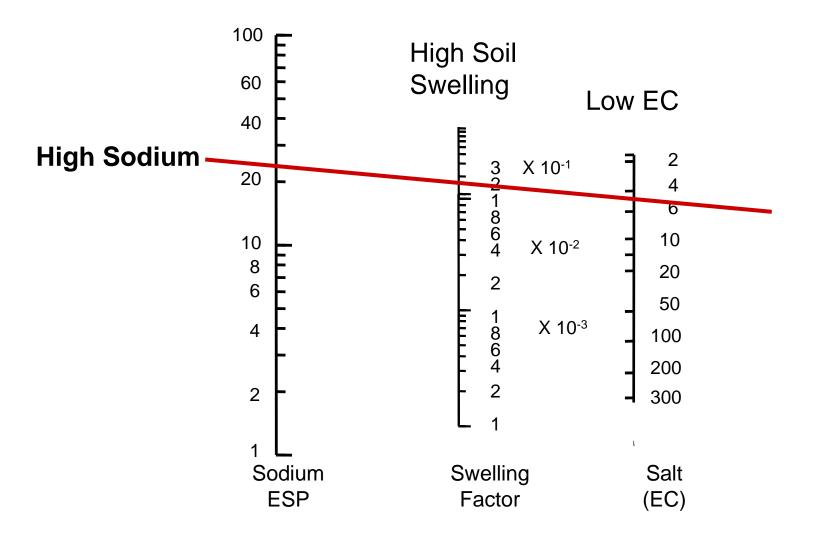

"But the miry places thereof and the marshes thereof shall not be healed; they shall be given to SALT."

www.ars.usda.cov/.../ sep05/saline0905.htm

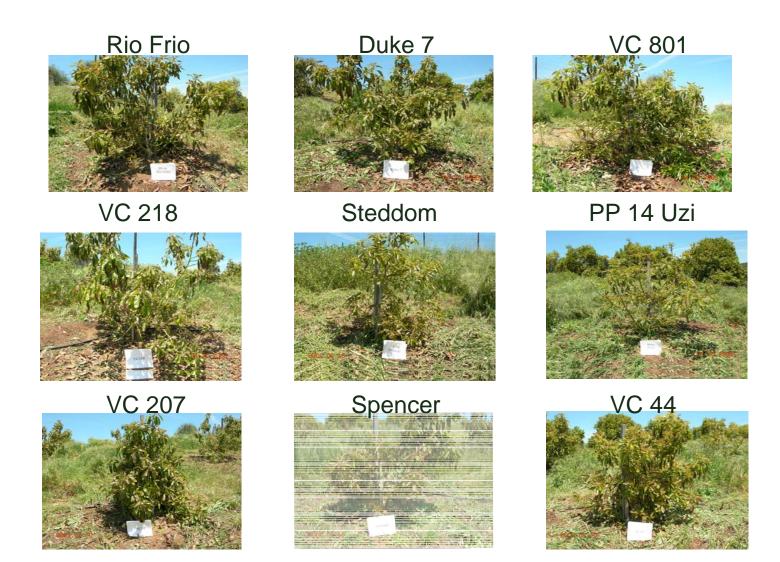
Hydraulic Conductivity of Hoytville Soil


Depth	Hydraulic conductivity			
inches	Natural Soil	Farmed Soil		
	inches	/ day		
0 - 8	4.8 – 48	3.8		
8 - 20	4.8 - 14.4	1.4		
20 - 52	4.8 - 14.4	7.0		
52 - 60	1.4 - 4.8	7.0		


Double ring infiltrometer for measuring soil water permeability



Hydraulic Conductivity in Different Soils


Soil Swelling Factor: Sodium Content (SAR) vs Salt Content (EC)

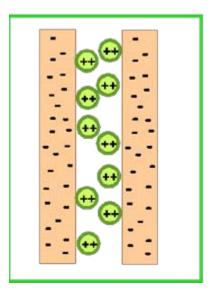
Soil Swelling Factor: Sodium Content (SAR) vs Salt Content (EC)

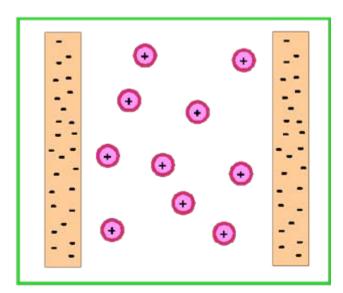
100 No Soil 60 Swelling High EC 40 Low Sodium 2 X 10⁻¹ 321 864 4 6 20 Ē 10 10 X 10⁻² 8 20 2 6 50 1 8 6 E X 10⁻³ 4 100 200 2 2 300 1 Sodium Swelling Salt ESP Factor (EC)

Recent Research Has Identified Avocado Rootstocks that Vary in Salinity Tolerance

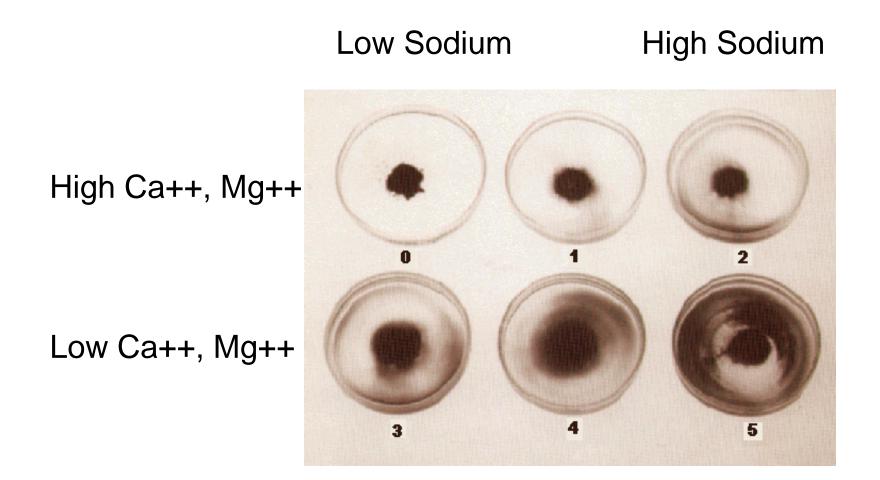
Importance of Soil Texture for Water Holding

Available Water Storage Capacity


Texture	Short Growing Season Crops	Long Growing Season Crops		
	(in./4 ft.)	(in./5ft.)		
Coarse Sand and	d Gravel 2.0	2.5		
Sand	3.2	4.0		
Loamy Sand	4.4	5.5		
Sandy Loam	6.0	7.5		
Fine Sandy Loan	m 7.6	9.5		
Loam and Silt L	.oam 9.6	12.0		
Clay Loam	8.4	10.5		
Silty Clay and C	Clay 7.6	9.5		


Salinity: Sodium and Chloride

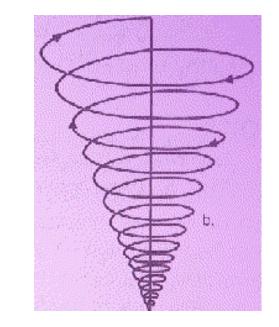
Good Salts: Calcium, Magnesium Hold soil particles together


Problem Salts: Sodium – soil dispersion Chloride - toxicity

Calcium and magnesium help soil particles stick together; Sodium causes the soil particles to disperse.

Poor water infiltration leads to soil ponding: poor leaching, salt accumulation, low soil oxygen, root death from anoxia, and increased Phytophthora root rot.

Consequences of Soil Dispersion


Poor Drainage:

Less infiltration of water Increased water runoff Less efficient leaching of salt

Loss of Soil Structure Loss of soil pore space Decreased oxygen Increased soil erosion

Plant Effects

High soil bulk density Decreased root growth Anoxia and root death

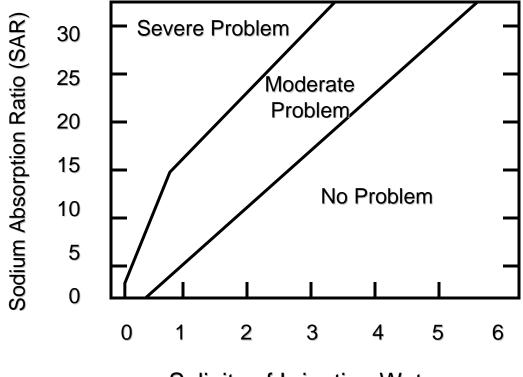
Loss of soil structure leads to a spiral effect that results in decreased soil quality, poor plant growth, root disease, low yields.

Measurement of Salinity Effects on Water Infiltration:

The Double Ring Infiltrometer

Table 2. Steady infiltration rates for general soil texturegroups in very deeply wetted soil (Hillel, 1982).				
Soil type	Steady infiltration rate (inches per hour)			
Sands	> 0.8			
Sandy and silty soils	0.4 - 0.8			
Loams	0.2 - 0.4			
Clayey soils	0.04 - 0.2			
Sodic clayey soils	< 0.04			

How can we determine whether salinity is affecting soil quality?


Sodium Absorption Ratio (SAR)

$$\sqrt{\frac{\operatorname{Ca^{++}} + \operatorname{Mg^{++}}}{2}}$$

Table 3. Combined effect of electrical conductivity (ECw) of irrigation water and sodium adsorption ratio (SAR) on the likelihood of water infiltration (permeability) problems

Sodium adsorbtion ration	Water infiltration problem				
(SAR) of irrigation or soil	Unlikely when ECw (dS/m) is more than	Likely when ECw (dS/m) is less than			
0–3	0.6	0.3			
3–6	1.0	0.4			
6–12	2.0	0.5			
12–20	3.0	1.0			
20–40	5.0	2.0			

Relationship Between Salinity and Sodicity and Water Infiltration Rates

Salinity of Irrigation Water (EC, dS/m or mmhos/cm)